代幾 I 小テスト (2006/01/19) 問題

[注意]

- テスト形式ですので「相談は不可」です。私語は慎むように!!。質問がある場合は、黙って、手を上げて、監督者が来るのを待ってください。
- ・ 持ち込みは「なんでも可」です。ただし、トラブルをさけるために、「貸し借り」は不可とします。
- 答案は「解答用紙」の所定の位置に記入してください(裏面もあります)。計算問題は、 「答のみ」を記入してください。

1 階数 (Rank) の計算

次の行列の階数 (Rank) をそれぞれ求めなさい。

Q.1

$$\begin{pmatrix}
5 & -7 & -7 \\
0 & 1 & 0 \\
3 & -4 & -4 \\
-5 & 6 & 7
\end{pmatrix}$$

Q.2

$$\left(\begin{array}{ccccccc}
1 & -4 & -1 & 1 & 1 \\
-1 & 7 & 2 & -3 & -1 \\
-1 & 1 & 0 & 1 & -1 \\
1 & -1 & 0 & -1 & 1
\end{array}\right)$$

Q.3

$$\begin{pmatrix}
-1 & 1 & -1 & 4 & 0 \\
2 & -1 & 2 & -9 & 0 \\
-3 & 5 & 3 & 4 & -3 \\
3 & -8 & -7 & 3 & 5
\end{pmatrix}$$

2 逆行列

次の行列の逆行列を求めなさい。

Q.1

$$\left(\begin{array}{ccc}
2 & 0 & -3 \\
0 & -1 & 2 \\
-3 & 1 & 3
\end{array}\right)$$

Q.2

$$\left(\begin{array}{ccc}
-2 & 3 & 0 \\
-1 & 3 & -2 \\
2 & -5 & 3
\end{array}\right)$$

Q.3

$$\left(\begin{array}{cccc}
-1 & 1 & -1 \\
1 & 2 & -3 \\
0 & -2 & 3
\end{array}\right)$$

3 連立方程式

次の連立方程式を解きなさい。

Q.1

$$\begin{cases} x_0 - 6x_1 - x_2 + 5x_3 & = -24 \\ -4x_0 + 2x_1 - x_2 - x_3 & = 26 \\ 3x_1 + 2x_2 - 3x_3 & = 6 \\ 2x_0 + 2x_1 + x_2 - 2x_3 & = -3 \end{cases}$$

Q.2

$$\begin{cases}
-2x_0 + x_1 & -2x_3 = -6 \\
2x_0 - x_1 & +2x_3 = 6 \\
x_0 + x_2 & = 3 \\
-2x_0 + x_1 & -2x_3 = -6
\end{cases}$$

Q.3

$$\begin{cases}
2x_0 & -6x_2 - 2x_3 = 5 \\
-2x_0 - x_1 + 4x_2 + 2x_3 = -6 \\
5x_0 + 2x_1 - 11x_2 - 5x_3 = 15 \\
2x_1 + 4x_2 = 2
\end{cases}$$

4 行列式

次の行列の行列式をそれぞれ求めなさい。

Q.1

$$\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & 0 & 2 \\
0 & 3 & -6
\end{array}\right)$$

Q.2

$$\left(\begin{array}{ccccc}
6 & -2 & 2 & -3 \\
0 & 2 & -2 & 0 \\
1 & 0 & 1 & -1 \\
-3 & 0 & 0 & 3
\end{array}\right)$$

Q.3

$$\begin{pmatrix}
6 & 0 & -6 & -3 & 6 \\
0 & 2 & 0 & -4 & 0 \\
3 & 0 & -3 & -3 & 4 \\
0 & -2 & 3 & 4 & -3 \\
-3 & -2 & 3 & 7 & -3
\end{pmatrix}$$

5 証明

次の問題をそれぞれ解きなさい。

Q.1 次の等式を証明せよ。

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Q.2~A,B が n 次正方行列の時、次の式が成立することを示せ。

$$\begin{vmatrix} A+B & A-B \\ A-B & A+B \end{vmatrix} = 4^n |A||B|$$

Q.3 A を n 次正方行列とする。この時 $|\tilde{A}|=|A|^{n-1}$ が成立することを示せ。ただし、 \tilde{A} は、行列 A の余因子行列 1 を指す。

証明問題のヒント

証明問題を解く場合に、以下の証明の の中を埋めたものを解答としてもよい (以下のヒントをまるっきり、無視して、自分なりの解答を記述してもよいし、一部だけを参考にしてもよい)。

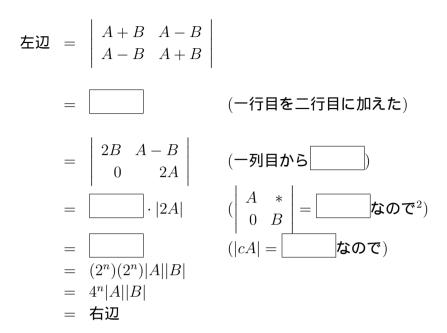
Q.1 三つの列ベクトル a, b, c を、それぞれ次のようにおく。

$$m{a} = \left(egin{array}{c} a_1 \ a_2 \ a_3 \end{array}
ight), \, m{b} = \left(egin{array}{c} b_1 \ b_2 \ b_3 \end{array}
ight), \, m{c} = \left(egin{array}{c} c_1 \ c_2 \ c_3 \end{array}
ight)$$

すると、次のようになる。

左辺 =
$$\begin{vmatrix} a_1+b_1 & b_1+c_1 & c_1+a_1 \\ a_2+b_2 & b_2+c_2 & c_2+a_2 \\ a_3+b_3 & b_3+c_3 & c_3+a_3 \end{vmatrix}$$
 = $\det(a+b, -)$, $c+a$) = $\det(a,b+c, -)$ + $\det(a,b,a)$ + $\det(a,c,a)$ + $\det(b,b,c)$ + $\det(b,b,a)$ + $\det(b,c,c)$ + $\det(b,c,a)$ = $\det(a,b,c)$ + $\det(a,b,c)$ = $\det(a,b,c)$ + $\det(a,b,c)$ = $\det(a,b,c)$ + $\det(a,b,c)$ = $\det(a,b,c)$ + $\det(a,b,c)$ = $\det(a,b,c)$

¹教科書 p.87



Q.3 行列 A が、正則 ($|A| \neq 0$) の場合とそうでない場合で場合わけし、いずれの場合も成立することを示す。

正則でない場合 A が正則でない場合は、|A|, $|\tilde{A}|$ は共に 0 となる。|A| が正則でない場合、 $|\tilde{A}|=0$ になる理由は以下の通りである。

A が O(零行列) である場合とそうでない場合に、場合分けを行う。

$A=O$ の時 $ ilde{A}$ の i,j 要素は、 A の $oxdot$ であり、これは、その要素
が、元の A の要素からなる $lacksymbol{lack}$ である。ところが、 $A=O$ なの
で、行列 A の要素 $a_{i,j}$ は全て $lacksymbol{ ilde{C}}$ である。したがって、 A の小
行列の要素も当然 0 となり、その行列式も、全て 0 となる。よって、
の要素が、全て 0 となり、 $ ilde{A}$ 自身が、 $oxed{oxed}$ 。したがって、
$ ilde{A} =0$ となる。
A eq O の時 背理法によって、 が正則でないことを示す。
今、仮に、 $oxedown$ が、正則であると仮定する。すると、 $ ilde{A}$ の逆
行列 $ ilde{A}^{-1}$ が存在する。教科書 $\mathrm{p.88}$ 系 $[3.3]$ より、 $luespie$ が成立
するので、これより、両辺に $ ilde{A}^{-1}$ を掛けて、 $A=igsquare$ とな
る。ところが、 A は、正則でないので、 $ A =0$ である。これよ

り、 $A=0\cdot ilde{A}^{-1}=$ となる。ところが、これは、

盾が導かれたので、 \tilde{A} が正則でないことが解る。

に矛盾する。すなわち、 \tilde{A} が正則だと仮定することによって、矛

以上により、 \tilde{A} が正則でないので、 $|\tilde{A}|=0$ である。

A=O の場合も、そうでない場合も、いずれの場合も $|\tilde{A}|=0$ を示すことができたので、A が正則でなければ、常に $|\tilde{A}|=0$ である。

したがって、左辺 $= ilde{A} =$ $oxdot_{n-1}= A ^{n-1}=$ 右辺 となり、与 π	えらえた
等式は成立する。	
正則の場合 一般に、教科書 $\mathrm{p.88}$ 系 $\mathrm{[3.3]}$ より、 $\overline{}$ が成立する。そこで、	、この両
辺の行列式を取り、公式 $ AB =$ $ cA =$ を用いれば、	$ A \tilde{A} =$
$ A ^n E =igsquare$ が成立することが解る。ここで、 A が正則ならば、 $ A $	1 /
ので、この両辺を $ A $ で割れば、 $ ilde{A} =rac{ A ^n}{ A }= A ^{n-1}$ となり、与えられ π	た等式が

A が正則の場合もそうでない場合のいずれの場合でも、与えられた等式が成立するので、与えられた式は、常に成立する。

成立する。