
ICT リテラシー (情報技術論) A

-- 第 13 回 : アルゴリズム --

栗野 俊一

講義内容の静止画・動画での撮影、及び SNS 等への転載を固く
禁じます

2025/12/22 ICT リテラシー (情報技術論) A

 伝言

 私語は慎むように !!
 席は自由です
 できるだけ前に詰めよう

 コロナ対策のために、ソーシャルディスタンスをたもとう

 色々なお知らせについて
 栗野の Web Page に注意する事

 http://edu-gw2.math.cst.nihon-u.ac.jp/~kurino
 google で「kurino」で検索

 今後の予定

 ICT リテラシー (情報技術論) A

 今後の予定

 講義内容の静止画・動画での撮影、及び SNS 等への転載を固く禁じます

 今後の予定

 今後の予定(後ろから)
 15 回目 : 試験を行う (試験は年明けになる)
 オンライン試験を予定している(自宅から受ける)

 都合がわるい場合は連絡をすれば別の日時に行う(詳しくは次週説明)

 栗野もオンラインで質問対応で待機するが教室には来ない予定

 14 回目(次回) : 残りの内容をできるだけ..
 試験に関する説明行う

 13 回目(今回) : アルゴリズム

 アルゴリズム

 ICT リテラシー (情報技術論) A

 アルゴリズム

 講義内容の静止画・動画での撮影、及び SNS 等への転載を固く禁じます

 アルゴリズム

 アルゴリズム とは
 ある「問題」を解く アルゴリズム の定義
 確定性 : 明確な手順の有限な列で表現されている

 正当性 : その「問題」を解く(解を求める)事ができる

 停止性 : 有限時間で終了する

 問題に対して、アルゴリズムが与えられれば、
 アルゴリズム(の示す手順を適用する事)により、答を得る事ができる

 例: 公式(計算の手順が与えられる)、ユークリッドの互除法(最大公約数の求め方)、筆算、10 進 2 進変換

 数学的に問題を「解く」事
 問題の「答えを得る」事ではなく、「答えを得る手段(アルゴリズム)を得る」事

 アルゴリズムがあれば、(答えを知らない)問題の答えが得られる

 知識の構造
 問題は What : 問題の答となるものを定義

 アルゴリズムは How to: 問題の答となるもの求める手段

 コンピュータに答を求めさせるには、アルゴリズムが必要
 アルゴリズムが明確でない問題をコンピュータにやらせるのは難しい..

 Deep Learning は、「(ある種の拡張された)アルゴリズムを求める」アルゴリズム
 Deep Learning は正当性(問題定義)の点で、課題(正確性)を抱えている

 プログラム

 ICT リテラシー (情報技術論) A

 プログラム

 講義内容の静止画・動画での撮影、及び SNS 等への転載を固く禁じます

 プログラム

 プログラム (Text p.77 6.2 節)
 プログラム とは
 定義 : アルゴリズムをコンピュータに扱える(実行できる)ように表現した物

 プログラムをコンピュータに与えると、アルゴリズムを実行してくれる

 ソフトウェア
 特定なシステム(CPU/OS上)で、実行可能なプログラム

 プログラミング言語

 プログラミング言語とは (Text p.77 6.2.1 節)
 プログラムを記述するために作られた人工的な言語
 ハード(電気回路)でも、アルゴリズムが表現可能

 柔軟性を高めるために、ソフト(プログラム)で、機能を追加

 プログラミング言語の分類
 手続型 : 何(What)を、どうするか(How to) という処理手順を記述する
 例 : C++, Java, Python, etc..

 特徴 : CPU の命令に対応する指示を直接指定できるので、効率が良い

 非手続型 : 手続型以外のプログラミング言語
 特徴 : 手順の記述が不要なので、プログラム書き易いが、(手順がないので)非効率な事が多い

 関数型 : 問題の解を求める関数の定義を行う(例 : Lisp, ML)

 論理型 : 問題の解が満す条件を指定し、解を求めさせる (例 : Prolog, SQL)

 色々なプログラミング言語

 低級言語 : CPU 依存する
 機械語 : CPU への命令の並び (CPU 毎に異る / 2 進表現)
 アセンブリ言語 : 機械語の命令とほぼ 1 対 1 で表現可能 (文字列表現)

 高級言語 : CPU と独立 (言語処理系 [翻訳/通訳 を行うプログラム] が
必要)

 手続型
 Fortan : 最初の高級言語 (科学技術計算に利用) / Basic : Fortan 教育用簡易版

 Cobol : 商業計算用

 Algol (Pascal) : アルゴリズム記述用 (データ構造)

 C 言語 : Unix OS を記述されるために、設計 (free な Unix と一緒に広く利用される)

 C++ : Object 指向型 / Java : 仮想 CPU の実装 (OS から独立) / Python : ライブラリが多く、Deep Learning で利用

 Javascript : Java とは名前が似て居るが、別物 (HTML と併用される)

 関数型 Lisp : シンボル処理言語 (人工知能のアセンブラ / ラムダカリキュラス)

 論理型 Prolog : 論理プログラミング言語 / SQL : 関係データベースを操作する言語
(DB 専用言語)

 マークアップ言語 : プログラミング言語ではなく、Content を記述する言
語

 HTML : Web Page 記述 (javascript と組み合せる事により、機能を持つページが作
れる)

タグを利用して、情報を修飾する言語の共通規格 拡張可能
も に準拠するようになった

 プログラムの内部動作

 プログラムの内部動作 (Text p.78 6.2.2 節)
 CPU が理解できるプログラムは機械語のみ
 メモリ上に記録されている命令も機械語の命令 (2 進数)

 チューリングマイシと同じ(ノイマン型)なので、命令とデータの区別がない

 CPU にとっては都合がよいが、人間には分かり難い (低級言語)

 言語処理系
 (機械語以外の) 言語で記述されたプログラムを実行できるようにするプログラム
 コンパイラ(翻訳系) : 機械語に変換 (翻訳) する / 一度に変換 / 変換がおわれば不要

 インタープリター(通訳) : 機械語に変換 (通訳) する / 逐次変換 / いつでも必要

 高級言語の基本処理

 高級言語の基本処理 (Text p.79 6.2.3 節)
 手続型言語(C++,Java,Python) によるプログラム記述
 変数操作(入力,出力,代入,参照)を命令に基本として、その手順を記述

 操作手順の記述(プログラム)がアルゴリズムを表現する

 基本操作
 変数 : 名前がついた記憶領域(データを記録できる)
 名前を指定して、その値を取り出す(参照)や、値を記録させる(代入)が可能

 代入 : 変数に値を記録するように指示する事 (値は計算された結果になる)

 参照 : 変数名を指定して、その変数に記録されている値を取り出す事 (値は何度、参
照しても変らない)

 式 (四則計算) : 代入する値を「計算式」の形で表現すると、その「式」の値が計算され
る

 式で利用可能な演算子は言語によって異るが、四則は (+, -, *, /) が共通で利用できる

 制御構造 : 命令の実行の可否や、繰返し等を指示する構文
 if 文(条件判断) : 条件によって、指定した命令を実行したりしなかったりを表現する

 for 文(繰返し) : 条件によって、指定した命令を繰り返すか止めるかを表現する

 データベース

 ICT リテラシー (情報技術論) A

 データベース

 講義内容の静止画・動画での撮影、及び SNS 等への転載を固く禁じます

 データベース

 データベース (Text p.81 6.3 節)
 データベース とは : 構造化した情報またはデータの組織的な集合(what)
 大量のデータを保存，管理でき、データの検索，書き換えが容易に行えるもの(利用目的)

 例: (小規模)学籍簿、住所録、(大規模)銀行のオンラインシステム、戸籍

 データが単に集っているだけではだめ
 ビッグデータ (売上情報) : 構造化されていないとデータベースと言えない

 表紙が破れていたり、向きも順も適当に乱雑に本が詰めてある本棚は役に立たない

 整理され、書名順、著者順等に並べられた本棚は有用 (図書館学)

 データベース に必要な三つの要素
 検索速度 : 欲しいデータが短い時間で、データベースの中から探せる (構造化、索引)

 データ量 : 大量のデータが扱える (メモリに入らない量も扱える)

 完備性 : データの一貫性や整合性が保たれている (一部を削除した場合、関連した項目も一緒に削除)

 データベースの表現法

 データベースの表現法 (Text p.82 6.3.2 節)
 レコード(記録) : データベース内に記録されているデータの単位
 データベースの表現方法 : レコード間の「関係」の表現方法

 階層的表現 (木構造)
 データを親，子，孫のような階層構造に並べて木の形に表現

 最上位の親からたどることによって検索

 cf. 分類、会社組織、住所、ファイルシステム、ドメイン名

 木構造の概念 : 親子[上下]関係, 根(root), 葉, 枝, 子孫, 祖先, 兄弟

 木構造の得失 : 経路が一通り(高速/効率が良い)/全ての状態が表現できない(兼任問題)

 網的表現 (ネットワーク構造)
 データをノード(普通のレコード)、データ間の二項関係をアーク(関係レコード)としたネットワークで表現

 特定なデータから、関係を手繰る事によって、他のデータを探す(連想ゲーム)

 cf. 人間の記憶構造、(AI の)専門化知識、知り合いの関係、WWW, 実体関連モデル

 網構造の得失 : 任意の状態を表現/必要な情報のみ記録/構造がデータに依存(数学的な構造がない)

 関係的表現 (表構造 : リレーショナルデータベース)
 データ間の(n項)関係を表で表し、表の集合で表現

 表を操作する事により、目的のデータを含む表を作成する

 cf. Excel シート、時刻表

 表構造の得失 : 汎用的な表操作だけ/効率が悪い(汎用的過ぎる)

 関係的表現のデータ操作

 関係的表現のデータ操作 (Text p.84, 6.3.3 節)
 関係的表現の操作 : 数学的な集合操作に対応 (数学的な基礎がある)
 エドガー=コッド 「関係的表現の数学的基礎」(1970)

 集合演算
 合併 : 和集合を求める(OR)

 共通部分 : 共通集合を求める(AND)

 差 (引く) : 差集合を求める

 直積 : 直積集合を求める

 表操作
 射影 : 表のフィールド名(項目)が与えられたとき、項目に該当するリストを抜き出す操作

 選択 : 条件が与えられたときに、条件に合致するレコードを抜き出す操作

 結合 : 複数の表を結び付ける (自然な結合:重複したレコードを削除)

 SQL (Structured Query Language: 構造化問い合せ言語)
 関係的表現のデータベース(RDB)を操作するための言語

 おしまい

 ICT リテラシー (情報技術論) A

 おしまい

 講義内容の静止画・動画での撮影、及び SNS 等への転載を固く禁じます

