Download : sample-001.c ( SJIS 版 )
/*
* 2013/12/13 sample-001.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* メモリの操作 ( 情報の記録 : set_memory_value_at )
*/
set_memory_value_at ( 100, 1 ); /* 100 番地のセルに 1 を記録する */
set_memory_value_at ( 101, 10 ); /* 101 番地のセルに 10 を記録する */
/*
* メモリの操作 ( 情報の参照 : get_memory_value_at )
*/
printf ( "100 番地のセルに記録されている数値は %d です。\n",
get_memory_value_at ( 100 )
);
printf ( "101 番地のセルに記録されている数値は %d です。\n",
get_memory_value_at ( 101 )
);
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-001 100 番地のセルに記録されている数値は 1 です。 101 番地のセルに記録されている数値は 10 です。 C:\usr\c>
Download : sample-002.c ( SJIS 版 )
/*
* 2013/12/13 sample-002.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
* print_memory_set
* メモリへの記憶操作を行い、それを報告する
*/
void print_memory_set ( int address, int value ) {
/* 動作の表示 */
printf ( "%d 番地のセルに %d を記録。\n",
address, value
);
/* address 番地に value を記録する */
set_memory_value_at ( address, value ); /* 値の設定 */
}
/*
* print_line
* 横棒を表示
*/
void print_line ( void ) {
printf ( "--------------------------------------\n" );
}
/*
*
*/
int main ( void ) {
/*
* メモリの参照 : 一度記録した情報は何度でも参照できる
*/
print_memory_set ( 100, 1 ); /* 100 番地のセルに 1 を記録する */
printf ( "一度目 : " );
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 (一度目) */
printf ( "二度目 : " );
print_memory_value ( 100 ); /* 二度目 */
printf ( "三度目 : " );
print_memory_value ( 100 ); /* 三度目 */
/*
* 参照は何度行っても、同じ情報が得られる
*/
print_line();
/*
* 記憶の破壊 : 新しい情報を記録すると以前の記録は失われる
*/
print_memory_set ( 100, 99 ); /* 100 番地のセルに 99 を記録する */
printf ( "変更後 : " );
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 新しい情報を記憶すると以前の記録された情報は失われる
*/
/*
* 記録は最後のものだけ ( 参照の有無と無関係に最後のものだけを記録 )
*/
print_memory_set ( 100, 21 ); /* 100 番地のセルに 21 を記録する */
print_memory_set ( 100, 22 ); /* 100 番地のセルに 22 を記録する */
print_memory_set ( 100, 23 ); /* 100 番地のセルに 23 を記録する */
printf ( "現在値 : " );
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 記録されている情報は最後に記録された物だけ
*/
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-002 100 番地のセルに 1 を記録。 一度目 : 100 番地のセルに記録されている数値は 1 です。 二度目 : 100 番地のセルに記録されている数値は 1 です。 三度目 : 100 番地のセルに記録されている数値は 1 です。 -------------------------------------- 100 番地のセルに 99 を記録。 変更後 : 100 番地のセルに記録されている数値は 99 です。 100 番地のセルに 21 を記録。 100 番地のセルに 22 を記録。 100 番地のセルに 23 を記録。 現在値 : 100 番地のセルに記録されている数値は 23 です。 C:\usr\c>
Download : sample-003.c ( SJIS 版 )
/*
* 2013/12/13 sample-003.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
* print_memory_set
* メモリへの記憶操作を行い、それを報告する
*/
void print_memory_set ( int address, int value ) {
/* 動作の表示 */
printf ( "%d 番地のセルに %d を記録。\n",
address, value
);
/* address 番地に value を記録する */
set_memory_value_at ( address, value ); /* 値の設定 */
}
/*
* print_line
* 横棒を表示
*/
void print_line ( void ) {
printf ( "--------------------------------------\n" );
}
/*
*
*/
int main ( void ) {
/*
* メモリセルの独立性 : 番地の異るセルは独立に振る舞う
*/
print_memory_set ( 100, 1 ); /* 100 番地のセルに 1 を記録する */
print_memory_set ( 101, 2 ); /* 101 番地のセルに 2 を記録する */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_value ( 101 ); /* 101 番地のセルの内容を出力 */
/*
* 番地が異れば、記録されている情報も異る
*/
/*
* 記憶の独立性
*/
print_memory_set ( 100, 99 ); /* 100 番地のセルに 99 を記録する */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_value ( 101 ); /* 101 番地のセルの内容を出力 */
print_line();
/*
* 100 番地の情報を書き換えても、101 番地の情報は影響しない
*/
print_memory_set ( 101, 88 ); /* 101 番地のセルに 88 を記録する */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_value ( 101 ); /* 101 番地のセルの内容を出力 */
/*
* 逆も真なり
*/
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-003 100 番地のセルに 1 を記録。 101 番地のセルに 2 を記録。 100 番地のセルに記録されている数値は 1 です。 101 番地のセルに記録されている数値は 2 です。 100 番地のセルに 99 を記録。 100 番地のセルに記録されている数値は 99 です。 101 番地のセルに記録されている数値は 2 です。 -------------------------------------- 101 番地のセルに 88 を記録。 100 番地のセルに記録されている数値は 99 です。 101 番地のセルに記録されている数値は 88 です。 C:\usr\c>
Download : sample-004.c ( SJIS 版 )
/*
* 2013/12/13 sample-004.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
* print_memory_set
* メモリへの記憶操作を行い、それを報告する
*/
void print_memory_set ( int address, int value ) {
/* 動作の表示 */
printf ( "%d 番地のセルに %d を記録。\n",
address, value
);
/* address 番地に value を記録する */
set_memory_value_at ( address, value ); /* 値の設定 */
}
/*
* print_line
* 横棒を表示
*/
void print_line ( void ) {
printf ( "--------------------------------------\n" );
}
/*
*
*/
int main ( void ) {
/*
* メモリセルの容量
*/
print_memory_set ( 100, 0 ); /* 100 番地のセルに 0 を記録する */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_set ( 100, 100 ); /* 100 番地のセルに 100 を記録する */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_set ( 100, 255 ); /* 100 番地のセルに 255 を記録する */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 0 〜 255 ならば、記録できる
*/
print_line();
/*
* メモリセルの容量オーバー
*/
print_memory_set ( 100, 300 ); /* 100 番地のセルに 300 を記録しようとした */
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 300 は記憶されていない !!
* 実は 300 を 256 で割った余り ( 44 ) が記録されている
* 256 を越える(オーバーする)情報は捨てられる !!
*/
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-004 100 番地のセルに 0 を記録。 100 番地のセルに記録されている数値は 0 です。 100 番地のセルに 100 を記録。 100 番地のセルに記録されている数値は 100 です。 100 番地のセルに 255 を記録。 100 番地のセルに記録されている数値は 255 です。 -------------------------------------- 100 番地のセルに 300 を記録。 100 番地のセルに記録されている数値は 44 です。 C:\usr\c>
Download : sample-005.c ( SJIS 版 )
/*
* 2013/12/13 sample-005.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char cvar; /* char 型の変数 cvar の宣言 */
char dvar; /* char 型の変数 dvar の宣言 */
/*
* 変数はアドレスをもっている
*/
printf ( "変数 cvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( cvar )
);
printf ( "変数 dvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( dvar )
);
/*
* 変数名が異れば、番地も異っている
*/
/*
* 変数をアドレスを利用して参照
*/
cvar = 'c'; /* 変数 cvar に、値 'c' を代入 */
dvar = 'D'; /* 変数 Dvar に、値 'D' を代入 */
printf ( "変数 cvar に記録されている文字は %c です。\n",
get_variable_value_at ( get_variable_address( cvar ) )
);
printf ( "変数 dvar に記録されている文字は %c です。\n",
get_variable_value_at ( get_variable_address( dvar ) )
);
/*
* 変数の値をアドレスを利用して変更
*/
set_variable_value_at ( get_variable_address( cvar ), 'X' );
/* 変数 cvar の所に 'X' を記録 */
printf ( "cvar は %c です。\n", cvar );
set_variable_value_at ( get_variable_address( dvar ), 'y' );
/* 変数 dvar の所に 'y' を記録 */
printf ( "dvar は %c です。\n", dvar );
/*
*
*/
return 0;
}
/*
*
*/
10
C:\usr\c>sample-005< sample-005.in 変数 cvar のアドレスは 16 進数表現で bfefc9ee です。 変数 dvar のアドレスは 16 進数表現で bfefc9ef です。 変数 cvar に記録されている文字は c です。 変数 dvar に記録されている文字は D です。 cvar は X です。 dvar は y です。 C:\usr\c>
Download : sample-006.c ( SJIS 版 )
/*
* 2013/12/13 sample-006.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の文字列のメモリモデルによる理解
*/
/*
* 文字列はアドレスをもっている
*/
printf ( "文字列 \"abc\" のアドレスは 16 進数表現で %x です。\n",
get_string_address( "abc" )
);
/*
* 文字列の要素をアドレスを利用して参照
*/
printf ( "文字列 \"abc\" の先頭の文字は %c です。\n",
get_variable_value_at ( get_string_address( "abc" ) )
);
/*
* 文字列の要素の二つ目以後を取り出す
*/
printf ( "文字列 \"abc\" の先頭の次の文字は %c です。\n",
get_variable_value_at ( get_string_address( "abc" ) + 1 )
);
printf ( "文字列 \"abc\" の先頭の次の次の文字は %c です。\n",
get_variable_value_at ( get_string_address( "abc" ) + 2 )
);
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-006 文字列 "abc" のアドレスは 16 進数表現で 804877c です。 文字列 "abc" の先頭の文字は a です。 文字列 "abc" の先頭の次の文字は b です。 文字列 "abc" の先頭の次の次の文字は c です。 C:\usr\c>
Download : sample-007.c ( SJIS 版 )
/*
* 2013/12/13 sample-007.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char cvar; /* char 型の変数 cvar の宣言 */
char dvar; /* char 型の変数 dvar の宣言 */
char evar; /* char 型の変数 evar の宣言 */
/*
* 変数を並べてて宣言すると (偶然..) アドレスが連続していた..
*/
printf ( "変数 cvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( cvar )
);
printf ( "変数 dvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( dvar )
);
printf ( "変数 evar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( evar )
);
/*
* 変数をアドレスを利用して参照
*/
cvar = 'c'; /* 変数 cvar に、値 'c' を代入 */
dvar = 'D'; /* 変数 dvar に、値 'D' を代入 */
evar = '\0'; /* 変数 evar に、値 '\0' を代入 */
printf ( "cvar の所から記録されている文字列は (%s) です。\n",
get_variable_address( cvar )
);
/*
* アドレス経由で、変数の内容を変更
*/
set_variable_value_at ( get_variable_address( cvar ) + 1, 'x' );
/* 変数 cvar のアドレスの次のアドレスは dvar のアドレスなので.. */
printf ( "cvar に記録されている文字は %c です。\n",
cvar
);
/* 結果的に、dvar の内容が書き変わる */
printf ( "dvar に記録されている文字は %c です。\n",
dvar
);
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-007 変数 cvar のアドレスは 16 進数表現で bfecb7bd です。 変数 dvar のアドレスは 16 進数表現で bfecb7be です。 変数 evar のアドレスは 16 進数表現で bfecb7bf です。 cvar の所から記録されている文字列は (cD) です。 cvar に記録されている文字は c です。 dvar に記録されている文字は x です。 C:\usr\c>
Download : sample-008.c ( SJIS 版 )
/*
* 2013/12/13 sample-008.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char carray[3]; /* char 型の一次元配列 carray の宣言 (サイズは 3) */
/*
意味的には
char carry[0]; -- cvar
char carry[1]; -- dvar
char carry[2]; -- evar
のように考えて良い (cf. sample-007.c)
*/
/*
* 配列の要素のアドレスは連続している事が保証される
*/
printf ( "変数 carray[0] のアドレスは 16 進数表現で %x です。\n",
get_variable_address( carray[0] )
);
printf ( "変数 carray[1] のアドレスは 16 進数表現で %x です。\n",
get_variable_address( carray[1] )
);
printf ( "変数 carray[2] のアドレスは 16 進数表現で %x です。\n",
get_variable_address( carray[2] )
);
/*
* 変数をアドレスを利用して参照
*/
carray[0] = 'c'; /* 変数 carray[0] に、値 'c' を代入 */
carray[1] = 'D'; /* 変数 carray[1] に、値 'D' を代入 */
carray[2] = '\0'; /* 変数 carray[2] に、値 '\0' を代入 */
printf ( "carray[0] の所から記録されている文字列は (%s) です。\n",
get_variable_address( carray[0] )
);
/*
* アドレス経由で、変数の内容を変更
*/
set_variable_value_at ( get_variable_address( carray[0] ) + 1, 'x' );
/* 変数 carray[0] のアドレスの次のアドレスは carray[1] のアドレスなので.. */
printf ( "carray[0] に記録されている文字は %c です。\n",
carray[0]
);
/* 結果的に、carray[1] の内容が書き変わる */
printf ( "carray[1] に記録されている文字は %c です。\n",
carray[1]
);
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-008 変数 carray[0] のアドレスは 16 進数表現で bfe26e8d です。 変数 carray[1] のアドレスは 16 進数表現で bfe26e8e です。 変数 carray[2] のアドレスは 16 進数表現で bfe26e8f です。 carray[0] の所から記録されている文字列は (cD) です。 carray[0] に記録されている文字は c です。 carray[1] に記録されている文字は x です。 C:\usr\c>
Download : sample-009.c ( SJIS 版 )
/*
* 2013/12/13 sample-009.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
*
*/
char carray[3]; /* char 型の一次元配列 carray の宣言 (サイズは 3) */
/*
* 配列の要素のアドレスは連続している事が保証される
*/
carray[0] = 'c'; /* 変数 carray[0] に、値 'c' を代入 */
carray[1] = 'D'; /* 変数 carray[1] に、値 'D' を代入 */
carray[2] = '\0'; /* 変数 carray[2] に、値 '\0' を代入 */
printf ( "carray[0] の所から記録されている文字列は (%s) です。\n",
get_variable_address( carray[0] )
);
/*
* 配列名は、文字列と同じように扱える
*/
printf ( "carray が表現している文字列は (%s) です。\n",
carray
);
/*
* 文字列の一部を変更する事ができる
*/
carray[1] = 'U'; /* ニ文字目を 'U' に変更 */
printf ( "carray が表現している文字列は (%s) です。\n",
carray
);
carray[0] = 'p'; /* 一字目を 'p' に変更 */
printf ( "carray が表現している文字列は (%s) です。\n",
carray
);
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-009 carray[0] の所から記録されている文字列は (cD) です。 carray が表現している文字列は (cD) です。 carray が表現している文字列は (cU) です。 carray が表現している文字列は (pU) です。 C:\usr\c>
Download : sample-010.c ( SJIS 版 )
/*
* 2013/12/13 sample-010.c
*/
#include <stdio.h>
/*
*
*/
int main ( void ) {
/*
* 文字配列の初期化
*/
char carray[3] = "AB";
/*
carray[0] = 'A';
carray[1] = 'B';
carray[2] = '\0';
*/
printf ( "carray[0] は %c です。\n",
carray[0]
);
printf ( "carray[1] は %c です。\n",
carray[1]
);
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-010 carray[0] は A です。 carray[1] は B です。 C:\usr\c>
Download : sample-011.c ( SJIS 版 )
/*
* 2013/12/13 sample-011.c
*/
#include <stdio.h>
/*
*
*/
int main ( void ) {
/*
* アドレス演算子「&」と間接演算子「*」
*/
char carray[3] = "AB";
/*
* 添字による参照
*/
printf ( "carry[0] = %c\n", carry[0] );
printf ( "carry[1] = %c\n", carry[1] );
/*
* 間接演算子による参照
*/
printf ( "*carry = %c\n", *carry );
printf ( "*(carry+1) = %c\n", *(carry+1) );
/*
* address の比較
*/
s_print_string ( "&carry[0] = %x\n", &carry[0] );
s_print_string ( "carry = %x\n", carry );
/*
* 「&」と「*」は逆演算子
*/
s_print_string ( "carry = %x\n", carry );
s_print_string ( "&*carry = %x\n", &*carry );
s_print_string ( "carry[0] = %c\n", carry[0] );
s_print_string ( "*&carry[0] = %c\n", *&carry[0] );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-011 carray[0] は A です。 carray[1] は B です。 C:\usr\c>
Download : sample-012.c ( SJIS 版 )
/*
* 2013/12/13 sample-012.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* ◯×ゲームのボード (一次元版)
*
* y
* 0 1 2 (y,t)
* +-----+-----+-----+ +-----+
* 0 |(0,0)|(0,1)|(0,2)| |(0,0)| 0 = 0*3+0 = t*3+y
* +-----+-----+-----+ +-----+
* t 1 |(1,0)|(1,1)|(1,2)| |(0,1)| 1 = 0*3+1 = t*3+y
* +-----+-----+-----+ +-----+
* 2 |(2,0)|(2,1)|(2,2)| |(0,2)| 2 = 0*3+2 = t*3+y
* +-----+-----+-----+ +-----+
* |(1,0)| 3 = 1*3+0 = t*3+y
* +-----+
* |(1,1)| 4 = 1*3+1 = t*3+y
* +-----+
* |(1,2)| 5 = 1*3+2 = t*3+y
* +-----+
* |(2,0)| 6 = 2*3+0 = t*3+y
* +-----+
* |(2,1)| 7 = 2*3+1 = t*3+y
* +-----+
* |(2,2)| 8 = 2*3+2 = x*3+y
* +-----+
*
*/
#define BOARD_SIZE 3 /* ボードのサイズ */
#define SENTE_MARK 'o' /* 先手は 'o' (マル) */
#define GOTE_MARK 'x' /* 後手は 'x' (バツ) */
int main ( void ) {
/*
*
*/
char board[BOARD_SIZE*BOARD_SIZE]; /* サイズは 3 × 3 */
int t; /* 縱 */
int y; /* 横 */
/*
* ある局面
*
* oxx
* xoo
* oox
*/
board[0*BOARD_SIZE+0] = 'o'; /* (0,0) */
board[0*BOARD_SIZE+1] = 'x'; /* (0,1) */
board[0*BOARD_SIZE+2] = 'x'; /* (0,2) */
board[1*BOARD_SIZE+0] = 'x'; /* (1,0) */
board[1*BOARD_SIZE+1] = 'o'; /* (1,1) */
board[1*BOARD_SIZE+2] = 'o'; /* (1,2) */
board[2*BOARD_SIZE+0] = 'o'; /* (2,0) */
board[2*BOARD_SIZE+1] = 'x'; /* (2,1) */
board[2*BOARD_SIZE+2] = 'x'; /* (2,2) */
/*
*
*/
t = 0;
while ( t < BOARD_SIZE ) {
y = 0;
while ( y < BOARD_SIZE ) {
printf ( "%c", board[t*BOARD_SIZE+y] );
y = y + 1;
}
printf ( "\n" );
t = t + 1;
}
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-012 oxx xoo oxx C:\usr\c>
Download : sample-013.c ( SJIS 版 )
/*
* 2013/12/13 sample-013.c
*/
#include <stdio.h>
/*
* ◯×ゲームのボード (一次元版)
*
* y
* 0 1 2 (y,t)
* +-----+-----+-----+ +-----+
* 0 |(0,0)|(0,1)|(0,2)| |(0,0)| 0 = 0*3+0 = t*3+y
* +-----+-----+-----+ +-----+
* t 1 |(1,0)|(1,1)|(1,2)| |(0,1)| 1 = 0*3+1 = t*3+y
* +-----+-----+-----+ +-----+
* 2 |(2,0)|(2,1)|(2,2)| |(0,2)| 2 = 0*3+2 = t*3+y
* +-----+-----+-----+ +-----+
* |(1,0)| 3 = 1*3+0 = t*3+y
* +-----+
* |(1,1)| 4 = 1*3+1 = t*3+y
* +-----+
* |(1,2)| 5 = 1*3+2 = t*3+y
* +-----+
* |(2,0)| 6 = 2*3+0 = t*3+y
* +-----+
* |(2,1)| 7 = 2*3+1 = t*3+y
* +-----+
* |(2,2)| 8 = 2*3+2 = x*3+y
* +-----+
*
*/
#define BOARD_SIZE 3 /* ボードのサイズ */
#define SENTE_MARK 'o' /* 先手は 'o' (マル) */
#define GOTE_MARK 'x' /* 後手は 'x' (バツ) */
/*
* 二次元の座標を一次元に変換する関数
*/
int index2d ( int t, int y ) {
return t * BOARD_SIZE + y;
}
int main ( void ) {
/*
*
*/
char board[BOARD_SIZE*BOARD_SIZE]; /* サイズは 3 × 3 */
int t; /* 縱 */
int y; /* 横 */
/*
* ある局面
*
* oxx
* xoo
* oox
*/
board[index2d(0,0)] = 'o'; /* (0,0) */
board[index2d(0,1)] = 'x'; /* (0,1) */
board[index2d(0,2)] = 'x'; /* (0,2) */
board[index2d(1,0)] = 'x'; /* (1,0) */
board[index2d(1,1)] = 'o'; /* (1,1) */
board[index2d(1,2)] = 'o'; /* (1,2) */
board[index2d(2,0)] = 'o'; /* (2,0) */
board[index2d(2,1)] = 'x'; /* (2,1) */
board[index2d(2,2)] = 'x'; /* (2,2) */
/*
*
*/
t = 0;
while ( t < BOARD_SIZE ) {
y = 0;
while ( y < BOARD_SIZE ) {
printf ( "%c", board[index2d(t,y)] );
y = y + 1;
}
printf ( "\n" );
t = t + 1;
}
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-013 oxx xoo oxx C:\usr\c>
Download : sample-014.c ( SJIS 版 )
/*
* 2013/12/13 sample-014.c
*/
#include <stdio.h>
/*
* ◯×ゲームのボード (二次元版)
*
* y
* 0 1 2
* +-----+-----+-----+
* 0 |(0,0)|(0,1)|(0,2)|
* +-----+-----+-----+
* t 1 |(1,0)|(1,1)|(1,2)|
* +-----+-----+-----+
* 2 |(2,0)|(2,1)|(2,2)|
* +-----+-----+-----+
*
*/
#define BOARD_SIZE 3 /* ボードのサイズ */
#define SENTE_MARK 'o' /* 先手は 'o' (マル) */
#define GOTE_MARK 'x' /* 後手は 'x' (バツ) */
int main ( void ) {
/*
*
*/
char board[BOARD_SIZE][BOARD_SIZE]; /* サイズは 3 × 3 */
int t; /* 縱 */
int y; /* 横 */
/*
* ある局面
*
* oxx
* xoo
* oox
*/
board[0][0] = 'o'; /* (0,0) */
board[0][1] = 'x'; /* (0,1) */
board[0][2] = 'x'; /* (0,2) */
board[1][0] = 'x'; /* (1,0) */
board[1][1] = 'o'; /* (1,1) */
board[1][2] = 'o'; /* (1,2) */
board[2][0] = 'o'; /* (2,0) */
board[2][1] = 'x'; /* (2,1) */
board[2][2] = 'x'; /* (2,2) */
/*
*
*/
t = 0;
while ( t < BOARD_SIZE ) {
y = 0;
while ( y < BOARD_SIZE ) {
printf ( "%c", board[t][y] );
y = y + 1;
}
printf ( "\n" );
t = t + 1;
}
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-014 oxx xoo oxx C:\usr\c>
Download : sample-015.c ( SJIS 版 )
/*
* 2013/12/13 sample-015.c
*/
#include <stdio.h>
/*
* ◯×ゲームのボード (一次元版)
*
* y
* 0 1 2 (y,t)
* +-----+-----+-----+ +-----+
* 0 |(0,0)|(0,1)|(0,2)| |(0,0)| 0 = 0*3+0 = t*3+y
* +-----+-----+-----+ +-----+
* t 1 |(1,0)|(1,1)|(1,2)| |(0,1)| 1 = 0*3+1 = t*3+y
* +-----+-----+-----+ +-----+
* 2 |(2,0)|(2,1)|(2,2)| |(0,2)| 2 = 0*3+2 = t*3+y
* +-----+-----+-----+ +-----+
* |(1,0)| 3 = 1*3+0 = t*3+y
* +-----+
* |(1,1)| 4 = 1*3+1 = t*3+y
* +-----+
* |(1,2)| 5 = 1*3+2 = t*3+y
* +-----+
* |(2,0)| 6 = 2*3+0 = t*3+y
* +-----+
* |(2,1)| 7 = 2*3+1 = t*3+y
* +-----+
* |(2,2)| 8 = 2*3+2 = x*3+y
* +-----+
*
*/
#define BOARD_SIZE 3 /* ボードのサイズ */
#define SENTE_MARK 'o' /* 先手は 'o' (マル) */
#define GOTE_MARK 'x' /* 後手は 'x' (バツ) */
int main ( void ) {
/*
*
*/
char board[BOARD_SIZE][BOARD_SIZE]; /* サイズは 3 × 3 */
int t; /* 縱 */
int y; /* 横 */
/*
*
*/
printf ( "sizeof ( board[0][0] ) = %d\n",
sizeof ( board[0][0] )
);
printf ( "sizeof ( board[0] ) = %d\n",
sizeof ( board[0] )
);
printf ( "\n" );
for ( t = 0; t < BOARD_SIZE; t++ ) {
printf ( "board[%d]=%x\n", t, &board[t] );
for ( y = 0; y < BOARD_SIZE; y++ ) {
/* アドレスの表示 */
printf ( "\t(%d,%d)=%x\n", t, y, &board[t][y] );
}
printf ( "\n" );
}
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-015 sizeof ( board[0][0] ) = 1 sizeof ( board[0] ) = 3 board[0]=bf9718bf (0,0)=bf9718bf (0,1)=bf9718c0 (0,2)=bf9718c1 board[1]=bf9718c2 (1,0)=bf9718c2 (1,1)=bf9718c3 (1,2)=bf9718c4 board[2]=bf9718c5 (2,0)=bf9718c5 (2,1)=bf9718c6 (2,2)=bf9718c7 C:\usr\c>
Download : sample-017.c ( SJIS 版 )
/*
* 2013/12/13 sample-017.c
*/
#include <stdio.h>
/*
* 再帰を利用した階乗の計算(既出)
*
* 1 ( n < 1 )
* n! = {
* n * { (n-1)! }
*/
int fact ( int n ) {
if ( n < 1 ) { // n が 0 の時
return 1;
} else {
return fact ( n - 1 ) * n; // 再帰を利用して計算
}
}
int main ( void ) {
/*
*
*/
int n = 5;
/*
*
*/
printf ( "fact(%d)=%d\n", n, fact(n) );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-017 fact(5)=120 C:\usr\c>
Download : sample-018.c ( SJIS 版 )
/*
* 2013/12/13 sample-018.c
*/
#include <stdio.h>
/*
* 仮引数変数 n のアドレスと値はどうなっているか ?
*/
int fact ( int n ) {
int f;
printf ( "(fact:前) n = %d, &n = %x\n", n, &n );
if ( n < 1 ) {
f = 1;
} else {
f = fact ( n - 1 ) * n;
}
printf ( "(fact:後) n = %d, &n = %x\n", n, &n );
return f;
}
int main ( void ) {
/*
*
*/
int n = 5;
int f;
/*
*
*/
printf ( "(main) n = %d, &n = %x\n", n, &n );
/*
*
*/
f = fact(n);
printf ( "fact(%d)=%d\n", n, f );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-018 (main) n = 5, &n = bfd992f8 (fact:前) n = 5, &n = bfd992e0 (fact:前) n = 4, &n = bfd992b0 (fact:前) n = 3, &n = bfd99280 (fact:前) n = 2, &n = bfd99250 (fact:前) n = 1, &n = bfd99220 (fact:前) n = 0, &n = bfd991f0 (fact:後) n = 0, &n = bfd991f0 (fact:後) n = 1, &n = bfd99220 (fact:後) n = 2, &n = bfd99250 (fact:後) n = 3, &n = bfd99280 (fact:後) n = 4, &n = bfd992b0 (fact:後) n = 5, &n = bfd992e0 fact(5)=120 C:\usr\c>
Download : sample-019.c ( SJIS 版 )
/*
* 2013/12/13 sample-019.c
*/
#include <stdio.h>
/*
* 引数のアドレスは ? ( 引数の順に並んいる )
*/
int subfunc ( int a, int b ) {
printf ( "a = %d, &a = %x\n", a, &a );
printf ( "b = %d, &b = %x\n", b, &b );
}
int main ( void ) {
/*
*
*/
subfunc ( 2, 4 );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-019 a = 2, &a = bf980760 b = 4, &b = bf980764 C:\usr\c>
Download : sample-020.c ( SJIS 版 )
/*
* 2013/12/13 sample-020.c
*/
#include <stdio.h>
/*
* 一つの引数変数から(ポインター経由で..)他の引数変数を参照する事ができる
*/
int subfunc ( int a, int b ) {
printf ( "a = %d, &a = %x\n", a, &a );
printf ( "b = %d, &b = %x\n", b, &b );
/*
* 変数 b を利用して変数 a の値が参照できる
*/
printf ( "*(&b-1) = %d, &b-1 = %x\n", *(&b-1), &b-1 );
/*
* 変数 b を利用して変数 a の値を変更(代入)できる
*/
*(&b-1) = 10;
printf ( "a = %d\n", a );
}
int main ( void ) {
/*
*
*/
subfunc ( 2, 4 );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-020 a = 2, &a = bfb3bc70 b = 4, &b = bfb3bc74 *(&b-1) = 2, &b-1 = bfb3bc70 a = 10 C:\usr\c>
Download : sample-021.c ( SJIS 版 )
/*
* 2013/12/13 sample-021.c
*/
#include <stdio.h>
/*
* 先頭の引数のポインタを利用して、残りの引数を参照する
*/
int subfunc ( int a, ... ) {
printf ( "a = %d, &a = %x\n", a, &a );
printf ( "*(&a+1) = %d, &a + 1 = %x\n", *(&a+1), &a+1 );
printf ( "*(&a+2) = %d, &a + 2 = %x\n", *(&a+2), &a+2 );
}
int main ( void ) {
/*
*
*/
subfunc ( 1,2,3,4,5 );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-021 a = 1, &a = bfb82810 *(&a+1) = 2, &a + 1 = bfb82814 *(&a+2) = 3, &a + 2 = bfb82818 C:\usr\c>
Download : sample-022.c ( SJIS 版 )
/*
* 2013/12/13 sample-022.c
*/
#include <stdio.h>
/*
* 引数をアドレス経由で参照する
* 最初の引数 n は、他の引数の個数としての情報を担う
* 関数(のプログラム作成時)側では、
* (実行時の呼出の時に)幾つの引数が指定されるかを知る術がない
* 最初の引数 n の「値」を信じて振る舞うしかない
*/
int subfunc ( int n, ... ) {
int i;
for ( i = 0; i < n; i++ ) {
printf ( "arg[%d]=%d\n", i, *(&n+1+i) );
}
}
int main ( void ) {
/*
*
*/
printf ( "subfunc ( 5,1,2,3,4,5 );\n" );
subfunc ( 5,1,2,3,4,5 ); // 1 から 5 の追加の引数の個数を適切に指定
printf ( "subfunc ( 3,9,8,7,6 );\n" );
subfunc ( 3,9,8,7,6 ); // 4 つの追加の引数があるのに 3 としているので、最後の値は利用されない
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-022 subfunc ( 5,1,2,3,4,5 ); arg[0]=1 arg[1]=2 arg[2]=3 arg[3]=4 arg[4]=5 subfunc ( 3,9,8,7,6 ); arg[0]=9 arg[1]=8 arg[2]=7 C:\usr\c>
Download : sample-023.c ( SJIS 版 )
/*
* 2013/12/13 sample-023.c
*/
#include <stdio.h>
#include "s_print.h"
/*
* 最初の引数に指定した文字列の中に 「%」があったら、後の引数の値に置き換える
*/
int print_int_with_format ( char *fmt, int a, ... ) {
int i;
int j;
j = 0;
i = 0;
while ( fmt[i] != '\0' ) { /* 文字列の終わりがくるまで */
if ( fmt[i] == '%' ) { /* '%' がきたら特別処理
printf ( "%d", *(&a+j) ); /* 追加引数の値を取り出し出力 */
j = j + 1; /* 次の引数の準備 */
} else { /* '%' 以外は.. */
s_print_char ( fmt[i] ); /* その文字をそのまま出力 */
}
i = i + 1; /* 次の文字 */
}
}
int main ( void ) {
/*
*
*/
print_int_with_format ( "%\n", 99 );
print_int_with_format ( "i = %, j = %\n", 10, 20 );
print_int_with_format ( "1 st = %, 2nd = %, 3rd = % \n", 10, 20, 90 );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-023 i = , j = 1 st = , 2nd = , 3rd = C:\usr\c>
Download : sample-024.c ( SJIS 版 )
/*
* 2013/12/13 sample-024.c
*/
#include <stdio.h>
#include "s_print.h"
/*
*
*/
int main ( void ) {
/*
*
*/
// printf ( "..." ); /* これまで printf は「文字列出力」専門だった */
/* 実は、もっと、凄い機能がある */
printf ( "%d\n", 99 );
// 文字列の中に「%d」をいれると、これは、その後の引数の
// 整数値引数の値に書き変わる
/*
* 引数の個数は可変長
*/
printf ( "i=%d, j=%d, k=%d\n", 10, 20, 90 );
/*
* 上と同じ事をする命令列 ( いままでは面倒な事をしていた )
*/
s_print_string ( "i=" );
s_print_int ( 10 );
s_print_string ( ", j=" );
s_print_int ( 20 );
s_print_string ( ", k=" );
s_print_int ( 90 );
s_print_newline();
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-024 99 i=10, j=20, k=90 i=10, j=20, k=90 C:\usr\c>
Download : sample-025.c ( SJIS 版 )
/*
* 2013/12/13 sample-025.c
*/
#include <stdio.h>
#include "s_print.h"
/*
* printf を利用してみる
*/
int main ( void ) {
/*
*
*/
printf ( "abc\n" ); /* いままでと同じ */
/* 文字列がそのままでる */
printf ( "i=%d\n", 10 );
/* 文字列の中の 「%d」の部分が、二つ目の引数
10 に変る */
printf ( "i=%d, j=%d\n", 10, 20 );
/* 「%d」が二度でれば二度めは三つ目の引数の値を利用 */
printf ( "a=%f\n", 12.34 );
/* 実数(浮動小数点数) の場合は 「%f」を使う */
printf ( "i=%d, a=%f, c=%c, s=%s\n", 123, 12.34, 'a', "abc" );
/* 混在も可能
%c が文字
%s が文字列(文字型へのポインタ値)
*/
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-025 abc i=10 i=10, j=20 a=12.340000 i=123, a=12.340000, c=a, s=abc C:\usr\c>
Download : sample-026.c ( SJIS 版 )
/*
* 2013/12/13 sample-026.c
*/
#include <stdio.h>
#include "s_print.h"
/*
* printf の更なる機能 : 書式付きの出力
*/
int main ( void ) {
/*
* 同じ数値を異る形式(書式 / format)で出力できる
*/
printf ( "a=%10.6f\n", -12.34 );
/* 出力する形式を指定できる 10.6 は、全体 10 桁、小数点以下 6 桁の意味 */
printf ( "a=%20.10f\n", -12.34 );
/* 出力する形式を指定できる 20.10 は、全体 20 桁、小数点以下 10 桁の意味 */
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c>sample-026 a=-12.340000 a= -12.3400000000 C:\usr\c>
Download : sample-027.c ( SJIS 版 )
/*
* 2013/12/13 sample-027.c
*/
#include <stdio.h>
#include "s_print.h"
/*
* scanf, printf (出力関数) の入力版
*/
int main ( void ) {
/*
*
*/
int i;
/*
*
*/
printf ( "i の値を入力してください " );
scanf ( "%d", &i ); /* '%d' --> printf と同じ */
/* i = s_input_int(); */
/*
i = 99;
の時
scanf ( "%d", i );
は、
scanf ( "%d", 99 );
の意味。
これでは、scanf はどうやっても i の値を得る事ができない。
そこで、「&i」を指定 ( i のポインタ値がわかれば、 i の値が変更できる )
*/
/*
*
*/
printf ( "入力された i の値は %d でした\n", i );
/*
*
*/
return 0;
}
/*
*
*/
10
C:\usr\c>sample-027< sample-027.in i の値を入力してください 10 入力された i の値は 10 でした C:\usr\c>
#include <stdio.h>
int sum ( int add ) {
static int all_of_sum = 0;
/* 静的変数の宣言、この変数の初期化は、プログラムの
開始時に一度だけ行われる */
all_of_sum = all_of_sum + add;
/* これまでの all_of_sum の値に、新たに add を加える */
return all_of_sum;
}
int main(int argc, char *argv[] ) {
printf ( "%d\n", sum ( 10 ) ); /* 10 とでる */
printf ( "%d\n", sum ( 20 ) ); /* 30 とでる */
printf ( "%d\n", sum ( 30 ) ); /* 60 とでる */
}
#include <stdio.h>
/* 失敗例 */
int sum ( int add ) {
int all_of_sum = 0; /* 本当は static と付ける必要があった */
all_of_sum = all_of_sum + add;
return all_of_sum;
}
int main(int argc, char *argv[] ) {
printf ( "%d\n", sum ( 10 ) ); /* 10 とでる */
printf ( "%d\n", sum ( 20 ) );
printf ( "%d\n", sum ( 30 ) );
}
#include <stdio.h>
int all_of_sum = 0; /* static ではなく大域変数を利用した場合 */
int sum ( int add ) {
/* 静的変数の宣言、この変数の初期化は、プログラムの
開始時に一度だけ行われる */
all_of_sum = all_of_sum + add;
/* これまでの all_of_sum の値に、新たに add を加える */
return all_of_sum;
}
int main(int argc, char *argv[] ) {
printf ( "%d\n", sum ( 10 ) ); /* 10 とでる */
printf ( "%d\n", sum ( 20 ) ); /* 30 とでる */
printf ( "%d\n", sum ( 30 ) ); /* 60 とでる */
printf ( "%d\n", all_of_sum );
/* グローバルなので、他の所からも参照可能 */
all_of_sum = -100; /* 勝手に書き換える事もできる */
printf ( "%d\n", all_of_sum );
/* グローバルなので、他の所からも参照可能 */
printf ( "%d\n", sum ( 40 ) ); /* ?? とでる */
}
/*
* 2013/12/13 sample-001.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* メモリの操作 ( 情報の記録 : set_memory_value_at )
*/
set_memory_value_at ( 100, 1 ); /* 100 番地のセルに 1 を記録する */
set_memory_value_at ( 101, 10 ); /* 101 番地のセルに 10 を記録する */
/*
* メモリの操作 ( 情報の参照 : get_memory_value_at )
*/
printf ( "100 番地のセルに記録されている数値は %d です。\n",
get_memory_value_at ( 100 )
);
printf ( "101 番地のセルに記録されている数値は %d です。\n",
get_memory_value_at ( 101 )
);
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-002.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
* print_memory_set
* メモリへの記憶操作を行い、それを報告する
*/
void print_memory_set ( int address, int value ) {
/* 動作の表示 */
printf ( "%d 番地のセルに %d を記録。\n",
address, value
);
/* address 番地に value を記録する */
set_memory_value_at ( address, value ); /* 値の設定 */
}
/*
* print_line
* 横棒を表示
*/
void print_line ( void ) {
printf ( "--------------------------------------\n" );
}
/*
*
*/
int main ( void ) {
/*
* メモリの参照 : 一度記録した情報は何度でも参照できる
*/
/*
+-------+
100 | ?? | <- 値を設定される前は不明
+-------+
*/
print_memory_set ( 100, 1 ); /* 100 番地のセルに 1 を記録する */
/*
+-------+
100 | 1 | <- set された
+-------+
*/
printf ( "一度目 : " );
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 (一度目) */
/* 値を参照しても、元の値は変らない (非破壊操作) */
printf ( "二度目 : " );
print_memory_value ( 100 ); /* 二度目 */
printf ( "三度目 : " );
print_memory_value ( 100 ); /* 三度目 */
/*
* 参照は何度行っても、同じ情報が得られる
*/
print_line();
/*
* 記憶の破壊 : 新しい情報を記録すると以前の記録は失われる
*/
print_memory_set ( 100, 99 ); /* 100 番地のセルに 99 を記録する */
/*
+-------+
100 | 99 | <- reset された (前の値はなくなる)
+-------+
*/
printf ( "変更後 : " );
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 新しい情報を記憶すると以前の記録された情報は失われる
*/
/*
* 記録は最後のものだけ ( 参照の有無と無関係に最後のものだけを記録 )
*/
print_memory_set ( 100, 21 ); /* 100 番地のセルに 21 を記録する */
/*
+-------+
100 | 21 | <- reset された (前の値はなくなる)
+-------+
*/
print_memory_set ( 100, 22 ); /* 100 番地のセルに 22 を記録する */
/*
+-------+
100 | 22 | <- reset された (前の値はなくなる)
+-------+
*/
print_memory_set ( 100, 23 ); /* 100 番地のセルに 23 を記録する */
/*
+-------+
100 | 23 | <- reset された (前の値はなくなる)
+-------+
*/
printf ( "現在値 : " );
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 記録されている情報は最後に記録された物だけ
*/
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-003.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
* print_memory_set
* メモリへの記憶操作を行い、それを報告する
*/
void print_memory_set ( int address, int value ) {
/* 動作の表示 */
printf ( "%d 番地のセルに %d を記録。\n",
address, value
);
/* address 番地に value を記録する */
set_memory_value_at ( address, value ); /* 値の設定 */
}
/*
* print_line
* 横棒を表示
*/
void print_line ( void ) {
printf ( "--------------------------------------\n" );
}
/*
*
*/
int main ( void ) {
/*
* メモリセルの独立性 : 番地の異るセルは独立に振る舞う
*/
/*
+-----------+
100 | ??? |
+-----------+
101 | ??? |
+-----------+
*/
print_memory_set ( 100, 1 ); /* 100 番地のセルに 1 を記録する */
/*
+-----------+
100 | 1 |
+-----------+
101 | ??? |
+-----------+
*/
print_memory_set ( 101, 2 ); /* 101 番地のセルに 2 を記録する */
/*
+-----------+
100 | 1 |
+-----------+
101 | 2 |
+-----------+
*/
/*
+-----------+
100 | 1 |
+-----------+
101 | ??? |
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_value ( 101 ); /* 101 番地のセルの内容を出力 */
/*
* 番地が異れば、記録されている情報も異る
*/
/*
* 記憶の独立性
*/
print_memory_set ( 100, 99 ); /* 100 番地のセルに 99 を記録する */
/*
+-----------+
100 | 99 | <- 1 から 99 に書き変わる
+-----------+
101 | 2 | <- 100 番地の変更とは無関係
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_value ( 101 ); /* 101 番地のセルの内容を出力 */
print_line();
/*
* 100 番地の情報を書き換えても、101 番地の情報は影響しない
*/
print_memory_set ( 101, 88 ); /* 101 番地のセルに 88 を記録する */
/*
+-----------+
100 | 99 | <- 101 番地の変更とは無関係
+-----------+
101 | 88 | <- 値が 88 に変更される
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_value ( 101 ); /* 101 番地のセルの内容を出力 */
/*
* 逆も真なり
*/
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-004.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
* print_memory_set
* メモリへの記憶操作を行い、それを報告する
*/
void print_memory_set ( int address, int value ) {
/* 動作の表示 */
printf ( "%d 番地のセルに %d を記録。\n",
address, value
);
/* address 番地に value を記録する */
set_memory_value_at ( address, value ); /* 値の設定 */
}
/*
* print_line
* 横棒を表示
*/
void print_line ( void ) {
printf ( "--------------------------------------\n" );
}
/*
*
*/
int main ( void ) {
/*
* メモリセルの容量 (1 byte : 0 〜 2^8-1 [=255] しか記録できない.. )
*/
/*
+-----------+
100 | ? |
+-----------+
*/
print_memory_set ( 100, 0 ); /* 100 番地のセルに 0 を記録する */
/*
+-----------+
100 | 0 |
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_set ( 100, 100 ); /* 100 番地のセルに 100 を記録する */
/*
+-----------+
100 | 100 |
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
print_memory_set ( 100, 255 ); /* 100 番地のセルに 255 を記録する */
/*
+-----------+
100 | 255 |
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 0 〜 255 ならば、記録できる
*/
print_line();
/*
* メモリセルの容量オーバー
*/
print_memory_set ( 100, 300 ); /* 100 番地のセルに 300 を記録しようとした */
/*
+-----------+
100 | 44 | 45 は 300 を 256 で割った余り
+-----------+
*/
print_memory_value ( 100 ); /* 100 番地のセルの内容を出力 */
/*
* 300 は記憶されていない !!
* 実は 300 を 256 で割った余り ( 44 ) が記録されている
* 256 を越える(オーバーする)情報は捨てられる !!
*/
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-005.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char cvar; /* char 型の変数 cvar の宣言 */
char dvar; /* char 型の変数 dvar の宣言 */
/*
* 変数はアドレスをもっている
*/
printf ( "変数 cvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( cvar )
);
printf ( "変数 dvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( dvar )
);
/*
* 変数名が異れば、番地も異っている
*/
/*
* 変数をアドレスを利用して参照
*/
cvar = 'c'; /* 変数 cvar に、値 'c' を代入 */
dvar = 'D'; /* 変数 Dvar に、値 'D' を代入 */
printf ( "変数 cvar に記録されている文字は %c です。\n",
get_variable_value_at ( get_variable_address( cvar ) )
);
printf ( "変数 dvar に記録されている文字は %c です。\n",
get_variable_value_at ( get_variable_address( dvar ) )
);
/*
* 変数の値をアドレスを利用して変更
*/
set_variable_value_at ( get_variable_address( cvar ), 'X' );
/* 変数 cvar の所に 'X' を記録 */
printf ( "cvar は %c です。\n", cvar );
set_variable_value_at ( get_variable_address( dvar ), 'y' );
/* 変数 dvar の所に 'y' を記録 */
printf ( "dvar は %c です。\n", dvar );
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-006.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の文字列のメモリモデルによる理解
*/
/*
* 文字列はアドレスをもっている
*/
printf ( "文字列 \"abc\" のアドレスは 16 進数表現で %x です。\n",
get_string_address( "abc" )
);
/*
+-----------+
8048560 | 'a' | <-- "abc" という文字列に対応
+-----------+
| 'b' |
+-----------+
| 'c' |
+-----------+
| '\0' | <- '\0' は EOS (End of String)
+-----------+
*/
/*
* 文字列の要素をアドレスを利用して参照
*/
printf ( "文字列 \"abc\" の先頭の文字は %c です。\n",
get_variable_value_at ( get_string_address( "abc" ) )
);
/* 文字列に対応するアドレスを利用して、
文字列の先頭の文字を取り出す事ができる */
/*
* 文字列の要素の二つ目以後を取り出す
*/
printf ( "文字列 \"abc\" の先頭の次の文字は %c です。\n",
get_variable_value_at ( get_string_address( "abc" ) + 1 )
);
/*
+-----------+
8048560 | 'a' | <-- "abc" という文字列に対応
+-----------+
| 'b' | <- 8048561 = 8048560 + 1
+-----------+
| 'c' |
+-----------+
| '\0' | <- '\0' は EOS (End of String)
+-----------+
*/
/* 名前は計算できないが、アドレスは計算できる */
printf ( "文字列 \"abc\" の先頭の次の次の文字は %c です。\n",
get_variable_value_at ( get_string_address( "abc" ) + 2 )
);
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-007.c
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char cvar; /* char 型の変数 cvar の宣言 */
char dvar; /* char 型の変数 dvar の宣言 */
char evar; /* char 型の変数 evar の宣言 */
/*
* 変数を並べてて宣言すると (偶然..) アドレスが連続していた..
*/
printf ( "変数 cvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( cvar )
);
printf ( "変数 dvar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( dvar )
);
printf ( "変数 evar のアドレスは 16 進数表現で %x です。\n",
get_variable_address( evar )
);
/*
* 変数をアドレスを利用して参照
*/
cvar = 'c'; /* 変数 cvar に、値 'c' を代入 */
dvar = 'D'; /* 変数 dvar に、値 'D' を代入 */
evar = '\0'; /* 変数 evar に、値 '\0' を代入 */
printf ( "cvar の所から記録されている文字列は (%s) です。\n",
get_variable_address( cvar )
);
/*
* アドレス経由で、変数の内容を変更
*/
set_variable_value_at ( get_variable_address( cvar ) + 1, 'x' );
/* 変数 cvar のアドレスの次のアドレスは dvar のアドレスなので.. */
printf ( "cvar に記録されている文字は %c です。\n",
cvar
);
/* 結果的に、dvar の内容が書き変わる */
printf ( "dvar に記録されている文字は %c です。\n",
dvar
);
/*
*
*/
return 0;
}
/*
*
*/
/*
* 2013/12/13 sample-012.c
*/
#include <stdio.h>
#include "s_memory.h" /* memory モデルを理解するための関数定義 */
/*
* ◯×ゲームのボード (一次元版)
*
* y
* 0 1 2 (y,t)
* +-----+-----+-----+ +-----+
* 0 |(0,0)|(0,1)|(0,2)| |(0,0)| 0 = 0*3+0 = t*3+y
* +-----+-----+-----+ +-----+
* t 1 |(1,0)|(1,1)|(1,2)| |(0,1)| 1 = 0*3+1 = t*3+y
* +-----+-----+-----+ +-----+
* 2 |(2,0)|(2,1)|(2,2)| |(0,2)| 2 = 0*3+2 = t*3+y
* +-----+-----+-----+ +-----+
* |(1,0)| 3 = 1*3+0 = t*3+y
* +-----+
* |(1,1)| 4 = 1*3+1 = t*3+y
* +-----+
* |(1,2)| 5 = 1*3+2 = t*3+y
* +-----+
* |(2,0)| 6 = 2*3+0 = t*3+y
* +-----+
* |(2,1)| 7 = 2*3+1 = t*3+y
* +-----+
* |(2,2)| 8 = 2*3+2 = x*3+y
* +-----+
*
*/
#define BOARD_SIZE 3 /* ボードのサイズ */
#define SENTE_MARK 'o' /* 先手は 'o' (マル) */
#define GOTE_MARK 'x' /* 後手は 'x' (バツ) */
int main ( void ) {
/*
*
*/
char board[BOARD_SIZE*BOARD_SIZE]; /* サイズは 3 × 3 */
/*
board +-----------+
board[0] | | <-> (0,0) ; 0=0*3+0
+-----------+
board[1] | | <-> (0,1) ; 1=0*3+1
+-----------+
...
+-----------+
board[x] | | <-> (t,y) ; x=t*3+y
+-----------+
...
+-----------+
board[8] | | <-> (2,2) ; 8=2*3+2
+-----------+
*/
int t; /* 縱 */
int y; /* 横 */
/*
* ある局面
* 012
* 0 oxx
* 1 xoo
* 2 oox
*/
board[0*BOARD_SIZE+0] = 'o'; /* (0,0) <-> 0*3+0 = 0 */
board[0*BOARD_SIZE+1] = 'x'; /* (0,1) */
board[0*BOARD_SIZE+2] = 'x'; /* (0,2) */
board[1*BOARD_SIZE+0] = 'x'; /* (1,0) */
board[1*BOARD_SIZE+1] = 'o'; /* (1,1) */
board[1*BOARD_SIZE+2] = 'o'; /* (1,2) */
board[2*BOARD_SIZE+0] = 'o'; /* (2,0) */
board[2*BOARD_SIZE+1] = 'x'; /* (2,1) */
board[2*BOARD_SIZE+2] = 'x'; /* (2,2) */
/*
*
*/
t = 0;
while ( t < BOARD_SIZE ) {
y = 0;
while ( y < BOARD_SIZE ) {
printf ( "%c", board[t*BOARD_SIZE+y] );
y = y + 1;
}
printf ( "\n" );
t = t + 1;
}
/*
*
*/
return 0;
}
/*
*
*/
/*
* DATE-DIR-QQQQ.c
* メモリ操作での和
* s_memory.h を利用し、
* 100 番地の内容と 101 番地の内容の和を 102 番地に入れるプログラムを作成しなさい
*/
/*
*
*/
#include <stdio.h>
#include "s_memory.h"
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
*
*/
int main ( int argc, char *argv[] ) {
/* 値の設定 */
/*
* メモリセルの容量
*/
set_memory_value_at ( 100, 12 ); /* 100 番地のセルに 12 を記録する */
set_memory_value_at ( 101, 78 ); /* 100 番地のセルに 78 を記録する */
/*
+--------------+
100 | 12 |
+--------------+
101 | 78 |
+--------------+
102 | ?? | <- 12+78 = 90 を入れる
+--------------+
*/
/*
* 100 番地の値と 101 番地の値の和を 102 番地にいれる
ただし、「s_memory.h を使え」とあるので
利用できるのは
set_memory_value_at
と
get_memory_value_at
である。
100 番地と 101 番地の情報を取り出す
get_memory_value_at(100)
get_memory_value_at(101)
その値を加えて、和を計算する
.. + ..
その和を 102 番地に保存する
set_memory_value_at ( 102, .. );
*/
set_memory_value_at ( 102,
get_memory_value_at(100)
+
get_memory_value_at(101)
);
/*
cf.
変数 a, b の値の和を c に代入
c = a+b;
*/
/*
* 結果の出力
*/
print_memory_value ( 102 ); /* 102 番地のセルの内容を出力 */
return 0;
}
/*
*
*/
/*
* DATE-DIR-QQQQ.c
* アドレスを利用した間接参照
* 代入文を利用せず、s_variable.h を利用して、変数 cvar の値を 1 だけふやせ
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char cvar = 'p'; /* char 型の変数 cvar の宣言 */
printf ( "cvar は %c です。\n", cvar );
/*
cvar の値を 1 ふやしたい
代入文は使うな / s_variable.h を利用
よって、利用できるは、
get_variable_address( VAR )
set_variable_value_at( ADDR, VALUE );
内容としては、
cvar の値を取出し、
その値に 1 を加え
結果を cvar に設定する
cf. (代入文)
cvar = cvar + 1
*/
set_variable_value_at (
get_variable_address( cvar ),
get_variable_value_at (
get_variable_address( cvar )
) + 1
);
printf ( "cvar は %c になりました。\n", cvar );
/*
*
*/
return 0;
}
/*
*
*/
大域変数 : 関数(ブロック)の外で宣言された変数
例:
int x; /* 大域変数 : ブロックの外 */
int main(int argc, char *argv[] ) {
int y; /* auto 変数(居所変数) : ブロック内 */
x = 1; /* どの関数からも利用可能 */
y = 1; /* 宣言されているブロック内でのみ参照可能 */
}
[特徴]
何処 (どの関数) からも参照ができる (大域的)
スコープ : 有効範囲
何時 (プログラム開始時から終了ま) で参照できる(永遠的)
エクステント : 有効時間
[比較] (局所変数と比較)
局所変数の有効範囲は、宣言されたブロックの中のみ
スコープがブロック内
局所変数の有効時間は、ブロックの中にはいった時に有効になり、ブロックの外に出ると失われる
エクステントが、ブロック内の命令実行時
「ブロック」'=, 「関数」
例2
static int x; /* 静的変数 : ファイル内のみ有効 */
int main(int argc, char *argv[] ) {
static int y; /* 静的変数 : ブロック内 */
x = 1; /* 同一ファイル内のどの関数からも利用可能 */
y = 1; /* 宣言されているブロック内でのみ参照可能 */
}
静的変数の特徴
スコープは、制限付き (ファイル内、関数内)
エクステントは永遠(何時でも利用可能)
同一の関数内で、呼出しの度に変数の値を再利用したい場合
定数のテーブルが欲い
大域変数に、ある程度制限をもたせたい
==
メモリモデル
メモリはセルの集まり
+-----------+
| | 一つのセルには、アドレス(番地)がついている
+-----------+ 一つのセルには、1 byte の情報が記録される
| |
+-----------+
100 | 1 | <- set_memory_value_at ( 100, 1 )
+-----------+
101 | 10 | <- set_memory_value_at ( 101, 10 )
+-----------+
| ?? | セルの内容は set しない限り不明
+-----------+
メモリ(セル)の性質
一度設定した値は、何度でも取り出せる(記録されている)
記憶できる値は一つだけ
新しい値を設定すると(新しい値を憶える替りに..)
古い値は失われる(破壊)
==
変数とメモリの関係
人間 -- [ C の命令 ] --> 変数 === メモリセルが対応
|
|
| 変数名 メモリ
| +-----------+
| cvar <--> | 'c' | bfac950e
| +-----------+
| dvar <--> | 'D' | bfac950e
| +-----------+
| ^
| アドレスを指定して直接参照できる |
+------------------------------------+
(人間の観点)
変数名 ------------------------> 値(メモリセル)
| ^
+-----> アドレス(番地) --------+
(計算機の観点)
「C 言語」では、人間が直接
アドレスを利用して、メモリを参照できる
# cf. java では(基本は..) はできない
# -> 禁止している (誤りの原因になるし、危険だから..)
アドレスは計算できる (「変数名」は計算できない)
なので、大変「強力」な機能
C 言語では、色々な機能が、これに他依っている
# cf java では、それぞれ別の形で実現
==
二次元配列とメモリの関係
N x M の二次元の配列を考える
(t,y) の場所と一次元の NM のサイズの配列の要素 x の愛大に
x = t * N + y
という関係を作れば、一次元で考えられる
一次元で考えられるならば、メモリで表現できる
C 言語の多次元配列は、この形実現されている
# アドレスの計算を自動的にやってくれるだけ
Download : 20131220-01.c ( SJIS 版 )
/*
* DATE-DIR-QQQQ.c
* メモリ操作での和
* s_memory.h を利用し、
* 100 番地の内容と 101 番地の内容の和を 102 番地に入れるプログラムを作成しなさい
*/
/*
*
*/
#include <stdio.h>
#include "s_memory.h"
/*
* print_memory_value
* 指定された address の記憶セルの内容を画面に出力する
*/
void print_memory_value ( int address ) {
printf ( "%d 番地のセルに記録されている数値は %d です。\n",
address,
get_memory_value_at ( address ) /* 値の取出し */
);
}
/*
*
*/
int main ( int argc, char *argv[] ) {
/* 値の設定 */
/*
* メモリセルの容量
*/
set_memory_value_at ( 100, 12 ); /* 100 番地のセルに 12 を記録する */
set_memory_value_at ( 101, 78 ); /* 100 番地のセルに 78 を記録する */
/*
* 100 番地の値と 101 番地の値の和を 102 番地にいれる
*/
/*
** この部分を完成させなさい
*/
/*
* 結果の出力
*/
print_memory_value ( 102 ); /* 102 番地のセルの内容を出力 */
return 0;
}
/*
*
*/
C:\usr\c\> 20131220-01 102 番地のセルに記録されている数値は 90 です。 C:\usr\c\>
Download : 20131220-02.c ( SJIS 版 )
/*
* DATE-DIR-QQQQ.c
* アドレスを利用した間接参照
* 代入文を利用せず、s_variable.h を利用して、変数 cvar の値を 1 だけふやせ
*/
#include <stdio.h>
#include "s_variable.h" /* memory モデルを理解するための関数定義 */
/*
*
*/
int main ( void ) {
/*
* C 言語の変数のメモリモデルによる理解
*/
char cvar = 'p'; /* char 型の変数 cvar の宣言 */
printf ( "cvar は %c です。\n", cvar );
/*
** この部分を完成させなさい
*/
printf ( "cvar は %c になりました。\n", cvar );
/*
*
*/
return 0;
}
/*
*
*/
C:\usr\c\> 20131220-02 cvar は p です。 cvar は q になりました。 C:\usr\c\>