Download : sample-001.c ( SJIS 版 )
/*
* 2015/10/16 sample-001.c
*/
/*
* 銀行口座への振込プログラム
*
* 利用方法
* コンパイル
* cc -o sample-001.exe sample-001.c
* 実行
* ./sample-001.exe
*/
#include <stdio.h>
/*
* main
*
* 現実の世界 プログラムの世界
*
* [表現] 栗野の口座 kurino_account
*
* [事前] 100 万円 kurino_account = 1000000
*
* 振込額 10 万円 transfer_money = 100000
* <振込> kurino_account = kurino_account + transfer_money
* [事後] 110 万円
*
* <振込> という「情報上の機能」 <足し算> という「数値上の操作」
*/
int main( int argc, char *argv[] )
{
int kurino_account = 1000000; /* 栗野の銀行口座に 100 万円はいっている */
int transfer_money = 100000; /* 10 万円の振込をしたい.. */
printf ( "現在の栗野の残高は %d 万円です。\n", kurino_account / 10000 );
/* <振込> を行うプログラム */
printf ( "栗野の口座に %d 万円の振込を行います。\n", transfer_money / 10000 );
/* 「足し算」が「振込」になる */
kurino_account = kurino_account + transfer_money;
printf ( "現在の栗野の残高は %d 万円です。\n", kurino_account / 10000 );
return 0;
}
$ ./sample-001.exe 現在の栗野の残高は 100 万円です。 栗野の口座に 10 万円の振込を行います。 現在の栗野の残高は 110 万円です。 $
Download : sample-002.c ( SJIS 版 )
/*
* 2015/10/16 sample-002.c
*/
/*
* ASCII Code を利用した「文字」の操作
*
* 利用方法
* コンパイル
* cc -o sample-002.exe sample-002.c
* 実行
* ./sample-002.exe
*/
#include <stdio.h>
/*
* main
*/
int main( int argc, char *argv[] )
{
char mathematics_record = 'B'; /* 現在の数学の評価は 'B' */
printf ( "数学の前評価の結果は %c でした。\n", mathematics_record );
printf ( "再度確認した所、採点ミスが見付かり、加点した所、グレードが一つ高くなりました。\n" );
/*
*
*/
/* 成績のグレードを高くするために 'B' を 'A' にする */
/*
現実の世界 データ/表現 プログラムの世界
ASICC Code
('B'=66, 'A'=65)
グレードを一段階「高く」する : 'B' -----> 'A'
66 -----> 65 : 1 減らす
*/
mathematics_record = mathematics_record - 1;
/*
*
*/
printf ( "その結果、数学の最終評価は %c になりました。\n", mathematics_record );
return 0;
}
$ ./sample-002.exe 数学の前評価の結果は B でした。 再度確認した所、採点ミスが見付かり、加点した所、グレードが一つ高くなりました。 その結果、数学の最終評価は A になりました。 $
Download : sample-003.c ( SJIS 版 )
/*
* 2015/10/16 sample-003.c
*/
/*
* 平面上の「点」の二つの表現
*
* 利用方法
* コンパイル ( M_PI,sin,cos を利用するので 「-lm」が必須 )
* cc -o sample-003.exe sample-003.c -lm
* 実行
* ./sample-003.exe
*/
#include <stdio.h>
#include <math.h> /* sin, cos を利用するので.. */
/*
* void print_orthogonal ( char name, double x, double y )
* 直交座標の表示
* char name; 点の名前
* double x; 直交座標の X 座標
* double y; 直交座標の Y 座標
*/
void print_orthogonal ( char name, double x, double y ) {
printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y );
}
/*
* void print_polar ( char name, double r, double a )
* 極座標の表示
* char name; 点の名前
* double r; 極座標の動径
* double a; 極座標の偏角
*/
void print_polar ( char name, double r, double a ) {
printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a );
}
/*
* main
*/
int main( int argc, char *argv[] )
{
/*
点 P : 座標 (2,3)
*/
double P_orthogonal_x = 2.0; /* 点 P の直交座標系の x 座標 */
double P_orthogonal_y = 3.0; /* 点 P の直交座標系の y 座標 */
double P_polar_radius; /* 点 P の極座標系の動径 */
double P_polar_argument; /* 点 P の極座標系の偏角 */
/*
点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 )
*/
double Q_orthogonal_x; /* 点 Q の直交座標系の x 座標 */
double Q_orthogonal_y; /* 点 Q の直交座標系の y 座標 */
double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */
double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */
/*
* 点 P の表示
*/
print_orthogonal ( 'P', P_orthogonal_x, P_orthogonal_y );
/*
* r = \sqrt{x^2+y^2} なので
*/
P_polar_radius = sqrt ( P_orthogonal_x * P_orthogonal_x + P_orthogonal_y * \
P_orthogonal_y );
/*
* a = \tan^{-1}{y/x} なので
* cf. http://www1.cts.ne.jp/~clab/hsample/Math/Math2.html
*/
P_polar_argument = atan ( P_orthogonal_y / P_orthogonal_x );
print_polar ( 'P', P_polar_radius , P_polar_argument );
/*
* 点 Q の表示
*/
print_polar ( 'Q', Q_polar_radius, Q_polar_argument );
/*
* x = r \cos{a} なので
*/
Q_orthogonal_x = Q_polar_radius * cos( Q_polar_argument );
/*
* y = r \sin{a} なので
*/
Q_orthogonal_y = Q_polar_radius * sin( Q_polar_argument );
print_orthogonal ( 'Q', Q_orthogonal_x, Q_orthogonal_y );
return 0;
}
$ ./sample-003.exe 点 P の直交座標は (2.000000,3.000000) です。 点 P の極座標は (3.605551,0.982794) です。 点 Q の極座標は (7.000000,1.047198) です。 点 Q の直交座標は (3.500000,6.062178) です。 $
Download : sample-004.c ( SJIS 版 )
/*
* 2015/10/16 sample-004.c
*/
/*
* 直交座標で表現されている点 Q から、それと原点に対して対称な点 R を求める
*
* 利用方法
* コンパイル
* cc -o sample-004.exe sample-004.c
* 実行
* ./sample-004.exe
*/
#include <stdio.h>
/*
* void print_orthogonal ( char name, double x, double y )
* 直交座標の表示
* char name; 点の名前
* double x; 直交座標の X 座標
* double y; 直交座標の Y 座標
*/
void print_orthogonal ( char name, double x, double y ) {
printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y );
}
/*
* main
*/
int main( int argc, char *argv[] )
{
/*
点 P : 座標 (2,3)
*/
double P_orthogonal_x = 2.0; /* 点 P の直交座標系の x 座標 */
double P_orthogonal_y = 3.0; /* 点 P の直交座標系の y 座標 */
double R_orthogonal_x; /* 点 P と原点対称な点 R の x 座標 */
double R_orthogonal_y; /* 点 P と原点対称な点 R の y 座標 */
/*
* 点 P の表示
*/
print_orthogonal ( 'P', P_orthogonal_x, P_orthogonal_y );
/*
* 点 R の計算
*/
/* R の x 座標は P の x 座標の符号を変えた物 */
R_orthogonal_x = - P_orthogonal_x;
/* R の y 座標は P の y 座標の符号を変えた物 */
R_orthogonal_y = - P_orthogonal_y;
/*
* 点 R の表示
*/
print_orthogonal ( 'R', R_orthogonal_x, R_orthogonal_y );
return 0;
}
$ ./sample-004.exe 点 P の直交座標は (2.000000,3.000000) です。 点 R の直交座標は (-2.000000,-3.000000) です。 $
Download : sample-005.c ( SJIS 版 )
/*
* 2015/10/16 sample-005.c
*/
/*
* 平面上の点を扱う
*
* 利用方法
* コンパイル
* cc -o sample-005.exe sample-005.c
* 実行
* ./sample-005.exe
*
*/
#include <stdio.h>
#include <math.h> /* sqrt を利用するので必要 (-lm も忘れずに ) */
/*
* void print_point ( double px, double py )
* 「点」を表示する
* double px -- 「点」の x 座標
* double py -- 「点」の y 座標
*/
void print_point ( double px, double py ) {
printf ( "( %f, %f )", px, py );
}
/*
* double point_distance ( double p1x, double p1y, double p2x, double p2y )
* ニ「点」間の距離を返す
* double p1x -- 「始点」の x 座標
* double p1y -- 「始点」の y 座標
* double p2x -- 「終点」の x 座標
* double p2y -- 「終点」の y 座標
*/
double point_distance ( double p1x, double p1y, double p2x, double p2y ) {
double dx = p2x - p1x; /* x 座標の差 */
double dy = p2y - p1y; /* y 座標の差 */
return sqrt ( dx*dx + dy*dy );
}
/*
* main
*/
int main( int argc, char *argv[] )
{
double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */
double p1y = 2.0;
double p2x = 4.0; /* p2 = ( 4.0, 6.0 ) */
double p2y = 6.0;
printf ( "始点 " );
print_point ( p1x, p1y );
printf ( " と終点 " );
print_point ( p2x, p2y );
printf ( " との距離は %f です。\n", point_distance ( p1x, p1y, p2x, p2y ) );
return 0;
}
$ ./sample-005.exe
始点 ( 1.000000, 2.000000 ) と終点 ( 4.000000, 6.000000 ) との距離は \
5.000000 です。
$
Download : sample-006.c ( SJIS 版 )
/*
* 2015/10/16 sample-006.c
*/
/*
* 平面上の点の操作
*
* 利用方法
* コンパイル
* cc -o sample-006.exe sample-006.c -lm
* 実行
* ./sample-006.exe
*
*/
#include <stdio.h>
#include <math.h> /* sqrt を利用するので必要 (-lm も忘れずに ) */
/*
* void print_point ( double px, double py )
* 「点」を表示する
* double px -- 「点」の x 座標
* double py -- 「点」の y 座標
*/
void print_point ( double px, double py ) {
printf ( "( %f, %f )", px, py );
}
/*
* void mirror_x_point ( double py )
* x 軸に対し線対称の「点」の y 座標を求める
* double py -- 「点」の y 座標
*/
double mirror_x_point ( double py ) {
return - py;
}
/*
* void mirror_y_point ( double px )
* y 軸に対し線対称の「点」の x 座標を求める
* double px -- 「点」の x 座標
*/
double mirror_y_point ( double px ) {
return - px;
}
/*
* main
*/
int main( int argc, char *argv[] )
{
double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */
double p1y = 2.0;
double p2x;
double p2y;
/* x 軸に対して線対象 */
printf ( "点 " );
print_point ( p1x, p1y );
printf ( " と x 軸に対して線対称な点は " );
p2x = p1x; /* x 座標は変らない */
p2y = mirror_x_point ( p1y ); /* y 座標のみ計算 */
print_point ( p2x, p2y );
printf ( " となります。\n" );
/* y 軸に線対象 */
printf ( "点 " );
print_point ( p1x, p1y );
printf ( " と y 軸に対して線対称な点は " );
p2x = mirror_x_point ( p1x ); /* x 座標のみ計算 */
p2y = p1y; /* y 座標は変らない */
print_point ( p2x, p2y );
printf ( " となります。\n" );
return 0;
}
$ ./sample-006.exe
点 ( 1.000000, 2.000000 ) と x 軸に対して線対称な点は ( 1.000000, -2.000000 ) \
となります。
点 ( 1.000000, 2.000000 ) と y 軸に対して線対称な点は ( -1.000000, 2.000000 ) \
となります。
$
Download : sample-007.c ( SJIS 版 )
/*
* 2015/10/16 sample-007.c
*/
/*
* 平面上の点の操作
*
* 利用方法
* コンパイル
* cc -o sample-007.exe sample-007.c
* 実行
* ./sample-007.exe
*
*/
#include <stdio.h>
/*
* void print_point ( double px, double py )
* 「点」を表示する
* double px -- 「点」の x 座標
* double py -- 「点」の y 座標
*/
void print_point ( double px, double py ) {
printf ( "( %f, %f )", px, py );
}
/*
* void mirror_o_point_x ( double px )
* 原点に対し点対称の「点」の x 座標を求める
* double px -- 「点」の x 座標
*/
double mirror_o_point_x ( double px ) {
return - px;
}
/*
* void mirror_o_point_y ( double py )
* 原点に対し点対称の「点」の y 座標を求める
* double py -- 「点」の y 座標
*/
double mirror_o_point_y ( double py ) {
return - py;
}
/*
* main
*/
int main( int argc, char *argv[] )
{
double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */
double p1y = 2.0;
double p2x;
double p2y;
/* 原点に点対象 */
printf ( "点 " );
print_point ( p1x, p1y );
printf ( " と原点に対して点線対称な点は " );
/* x と y の処理を別々に行う.. */
p2x = mirror_o_point_x ( p1x );
p2y = mirror_o_point_y ( p1y );
print_point ( p2x, p2y );
printf ( " となります。\n" );
return 0;
}
$ ./sample-007.exe
点 ( 1.000000, 2.000000 ) と原点に対して点線対称な点は ( -1.000000, -2.000000 ) \
となります。
$
Download : sample-008.c ( SJIS 版 )
/*
* 2015/10/16 sample-008.c
*/
/*
* 平面上の点の操作
*
* 利用方法
* コンパイル
* cc -o sample-008.exe sample-008.c -lm
* 実行
* ./sample-008.exe
*
*/
#include <stdio.h>
#include <math.h> /* sqrt を利用するので必要 (-lm も忘れずに ) */
/*
* void print_point ( double px, double py )
* 「点」を表示する
* double px -- 「点」の x 座標
* double py -- 「点」の y 座標
*/
void print_point ( double px, double py ) {
printf ( "( %f, %f )", px, py );
}
/*
* void mirror_x_point ( double py )
* x 軸に対し線対称の「点」の y 座標を求める
* double py -- 「点」の y 座標
*/
double mirror_x_point ( double py ) {
return - py;
}
/*
* void mirror_y_point ( double px )
* y 軸に対し線対称の「点」の x 座標を求める
* double px -- 「点」の x 座標
*/
double mirror_y_point ( double px ) {
return - px;
}
/*
* main
*/
int main( int argc, char *argv[] )
{
double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */
double p1y = 2.0;
double p2x;
double p2y;
/* x 軸に対して線対象 */
printf ( "点 " );
print_point ( p1x, p1y );
printf ( " と x 軸に対して線対称な点は " );
p2x = p1x; /* x 座標は変らない */
p2y = mirror_x_point ( p1y ); /* y 座標のみ計算 */
print_point ( p2x, p2y );
printf ( " となります。\n" );
/* y 軸に線対象 */
printf ( "点 " );
print_point ( p1x, p1y );
printf ( " と y 軸に対して線対称な点は " );
p2x = mirror_x_point ( p1x ); /* x 座標のみ計算 */
p2y = p1y; /* y 座標は変らない */
print_point ( p2x, p2y );
printf ( " となります。\n" );
return 0;
}
$ ./sample-008.exe
点 ( 1.000000, 2.000000 ) と x 軸に対して線対称な点は ( 1.000000, -2.000000 ) \
となります。
点 ( 1.000000, 2.000000 ) と y 軸に対して線対称な点は ( -1.000000, 2.000000 ) \
となります。
$
Download : sample-009.c ( SJIS 版 )
/*
* 2015/10/16 sample-009.c
*/
/*
* 平面上の点の操作 (構造体の利用例)
*
* 利用方法
* コンパイル
* cc -o sample-009.exe sample-009.c
* 実行
* ./sample-009.exe
*
*/
#include <stdio.h>
/*
* 最初に、直交座標で「点」を表現する型を作ってしまう
*/
typedef struct {
double x; /* 直交座標の x 座標を表すタグ名 */
double y; /* 直交座標の y 座標を表すタグ名 */
} Orthogonal; /* Orthogonal 型の宣言 */
/*
* void print_point ( Orthogonal pt );
* 「点」を表示する
* Orthogonal pt; 直交座標系で表現された「点」の座標
*/
void print_point ( Orthogonal pt ) {
/*
* 構造体の要素は、タグ名を利用して参照できる
*/
printf ( "( %f, %f )", pt.x, pt.y );
}
/*
* Orthogonal mirror_o_point ( Orthogonal pt )
* 原点に対し点対称の「点」を求める
* Orthogonal pt; 直交座標系で表現された「点」の座標
* 値 点対称の「点」を求める
*/
Orthogonal mirror_o_point ( Orthogonal pt ) {
Orthogonal result; /* 返す値を入れる変数 */
result.x = - pt.x; /* 結果の x 座標は、元の x 座標の符号をかえた物 */
result.y = - pt.y;
return result; /* 構造体の値が返せる */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
Orthogonal p1;
Orthogonal p2;
p1.x = 1.0; /* p1 = ( 1.0, 2.0 ) */
p1.y = 2.0;
/* 原点に点対象 */
printf ( "点 " );
/* 構造体は引数で、そのまま渡せる */
print_point ( p1 );
printf ( " と原点に対して点線対称な点は " );
/* 構造体は、値としても取り出せるし、普通に代入もできる */
p2 = mirror_o_point ( p1 );
print_point ( p2 );
printf ( " となります。\n" );
return 0;
}
$ ./sample-009.exe
点 ( 1.000000, 2.000000 ) と原点に対して点線対称な点は ( -1.000000, -2.000000 ) \
となります。
$
Download : sample-010.c ( SJIS 版 )
/*
* 2015/10/16 sample-010.c
*/
/*
* 名前を付けた点
*
* 利用方法
* コンパイル
* cc -o sample-010.exe sample-010.c
* 実行
* ./sample-010.exe
*/
#include <stdio.h>
/*
* 最初に、直交座標で「点」を表現する型を作ってしまう
*/
typedef struct {
double x; /* 直交座標の x 座標を表すタグ名 */
double y; /* 直交座標の y 座標を表すタグ名 */
} Orthogonal; /* Orthogonal 型の宣言 */
/*
* 更に、「名前付き」の「点」の型
*/
typedef struct {
char name; /* 点の名前 */
Orthogonal coordinate; /* 点の座標 */
} NPoint;
/*
* void print_point ( Orthogonal pt );
* 「点」を表示する
* Orthogonal pt; 直交座標系で表現された「点」の座標
*/
void print_point ( Orthogonal pt ) {
/*
* 構造体の要素は、タグ名を利用して参照できる
*/
printf ( "( %f, %f )", pt.x, pt.y );
}
/*
* void print_npoint ( NPoint npt );
* 名前付きの「点」を表示する
* NPoint npt; 名前付きの「点」
*/
void print_npoint ( NPoint npt ) {
printf ( "点 %c の直交座標は ", npt.name );
print_point ( npt.coordinate );
printf ( "です。\n" );
}
/*
* main
*/
int main( int argc, char *argv[] )
{
NPoint p; /* 点「P」*/
p.name = 'P'; /* 点「P」の名前は 'P' */
p.coordinate.x = 1.0; /* p.coordinate = ( 1.0, 2.0 ) */
p.coordinate.y = 2.0;
print_npoint ( p ); /* 点「P」を表示 */
return 0;
}
$ ./sample-010.exe 点 P の直交座標は ( 1.000000, 2.000000 )です。 $
Download : sample-011.c ( SJIS 版 )
/*
* 2015/10/16 sample-011.c
*/
/*
* 三次元空間内の点の操作 (構造体の利用例)
*
* 利用方法
* コンパイル
* cc -o sample-011.exe sample-011.c
* 実行
* ./sample-011.exe
*
*/
#include <stdio.h>
/*
* 「名前付き」の空間の「点」の型
*/
typedef struct {
char name; /* 点の名前 */
double x; /* 直交座標の x 座標を表すタグ名 */
double y; /* 直交座標の y 座標を表すタグ名 */
double z; /* 直交座標の z 座標を表すタグ名 */
} NPoint3D;
/*
* void print_point3D ( NPoint3D npt );
* 「点」を表示する
* NPoint3D npt; 直交座標系で表現された「点」の座標
*/
void print_point ( NPoint3D pt ) {
printf ( "点 %c の直交座標は ", pt.name );
printf ( "( %f, %f, %f )", pt.x, pt.y, pt.z );
printf ( "です。\n" );
}
/*
* NPoint3D mirror_o_point ( NPoint3D pt )
* 原点に対し点対称の「点」を求める
* NPoint3D pt; 直交座標系で表現された「点」の座標
* 値 点対称の「点」を求める
*/
NPoint3D mirror_o_point ( char newName, NPoint3D pt ) {
NPoint3D result; /* 返す値を入れる変数 */
result.name = newName; /* 名前は新しい物にする */
result.x = - pt.x; /* 結果の x 座標は、元の x 座標の符号をかえた物 */
result.y = - pt.y; /* 以下同様 */
result.z = - pt.z;
return result; /* 構造体の値が返せる */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
NPoint3D p;
NPoint3D q;
p.name = 'P';
p.x = 1.0; /* P = ( 1.0, 2.0, 3.0 ) */
p.y = 2.0;
p.z = 3.0;
/* 原点に点対象 */
print_point ( p );
/* 構造体は、値としても取り出せるし、普通に代入もできる */
q = mirror_o_point ( 'Q', p );
printf ( "これと、原点に対して対称な、" );
print_point ( q );
return 0;
}
$ ./sample-011.exe 点 P の直交座標は ( 1.000000, 2.000000, 3.000000 )です。 これと、原点に対して対称な、点 Q の直交座標は ( -1.000000, -2.000000, -3.000000 )です。 $
Download : sample-012.c ( SJIS 版 )
/*
* 2015/10/16 sample-012.c
*/
/*
* N 次元空間内の点の操作 (構造体/配列の利用例)
*
* 利用方法
* コンパイル
* cc -o sample-012.exe sample-012.c
* 実行
* ./sample-012.exe
*
*/
#include <stdio.h>
/*
* 「名前付き」の空間の「点」の型
*/
#define DIM 10 /* 10 次元 */
typedef struct {
char name; /* 点の名前 */
double coordinate[DIM]; /* 直交座標の x 座標を表すタグ名 */
} NPointND;
/*
* void print_pointND ( NPointND npt );
* 「点」を表示する
* NPointND npt; 直交座標系で表現された「点」の座標
*/
void print_point ( NPointND pt ) {
int dim;
printf ( "点 %c の直交座標は ", pt.name );
printf ( "( " );
dim = 0;
while ( dim < DIM ) {
printf ( "%f", pt.coordinate[dim] );
if ( dim < DIM - 1 ) {
printf ( ", " );
}
dim++;
}
printf ( " )" );
printf ( "です。\n" );
}
/*
* NPointND mirror_o_point ( NPointND pt )
* 原点に対し点対称の「点」を求める
* NPointND pt; 直交座標系で表現された「点」の座標
* 値 点対称の「点」を求める
*/
NPointND mirror_o_point ( char newName, NPointND pt ) {
NPointND result; /* 返す値を入れる変数 */
int dim;
result.name = newName; /* 名前は新しい物にする */
dim = 0;
while ( dim < DIM ) {
result.coordinate[dim] = - pt.coordinate[dim];
dim++;
}
return result; /* 構造体の値が返せる */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
NPointND p;
NPointND q;
int dim;
p.name = 'P';
dim = 0;
while ( dim < DIM ) {
p.coordinate[dim] = dim; /* 浮動小数点型に整数値を入れると自動的に変換される */
dim++;
}
/* 原点に点対象 */
print_point ( p );
/* 構造体は、値としても取り出せるし、普通に代入もできる */
q = mirror_o_point ( 'Q', p );
printf ( "これと、原点に対して対称な、" );
print_point ( q );
return 0;
}
$ ./sample-012.exe
点 P の直交座標は ( 0.000000, 1.000000, 2.000000, 3.000000, 4.000000, \
5.000000, 6.000000, 7.000000, 8.000000, 9.000000 )です。
これと、原点に対して対称な、点 Q の直交座標は ( -0.000000, -1.000000, -2.000000, \
-3.000000, -4.000000, -5.000000, -6.000000, -7.000000, \
-8.000000, -9.000000 )です。
$
/*
* 課題 20151009-01
*
* 2015/10/09 20151009-01-QQQQ.c
*
* 極座標で表現されている点 Q から、それと原点に対して対称な点 R を求める
*/
#include <stdio.h>
#include <math.h> /* sin, cos を利用するので.. */
/*
* void print_polar ( char name, double r, double a )
* 極座標の表示
* char name; 点の名前
* double r; 極座標の動径
* double a; 極座標の偏角
*/
void print_polar ( char name, double r, double a ) {
printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a );
}
/*
* main
*/
int main( int argc, char *argv[] )
{
/*
点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 )
*/
double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */
double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */
double R_polar_radius; /* 点 Q と原点対称な点 R の動径 */
double R_polar_argument; /* 点 Q と原点対称な点 R の偏角 */
/*
* 点 Q の表示
*/
print_polar ( 'Q', Q_polar_radius, Q_polar_argument );
/*
* 点 R の計算
*/
/* 対称なので原点から距離は同じ */
R_polar_radius = Q_polar_radius;
/* 180(π)だけ回転 */
R_polar_argument = Q_polar_argument + M_PI;
/*
* 点 R の表示
*/
print_polar ( 'R', R_polar_radius, R_polar_argument );
return 0;
}
/*
* 課題 CNAME-02
*
* 20151009 20151009-02-QQQQ.c
*
* 構造体を利用し、平行移動を行う関数を作成する
*/
#include <stdio.h>
/*
* 最初に、直交座標で「点」を表現する型 (Orthogonal) を作ってしまう
* Orthogonal 型は、二つの要素 ( x, y ) からなり、それらの型は double 型
*
* Orthogonal <----> double * double
* \in \in
* p <----> ( p.x, p.y )
*
* 残念ながら、C 言語の型定義機能で出来るのは「形(式)」の定義だけで
* 「意味」の定義はできない
* 「形」に「意味」をつけるのは、「それを扱うプログラム(関数)」の役目
*
* コーディングルール:
* 現実の世界 コンピュータの世界
*
* 平面上の点 P : ( x, y ) Orthogonal 型の pt : ( pt.x, pt.y )
* P の x 座標 : 3 pt.x = 3.0
* P の y 座標 : -2 pt.y = -2.0
*
* [注意]
* Orthogonal 型の pt を「現実の点 P」に対応させ、
* pt.x を点数 P の直交座標系における x 座標
* pt.y を点数 P の直交座標系における y 座標
* とする対応は、「决め(る)事」であり、
* 「必然的に『決る物』」では *ない*
* <反例 1>
* x と y の名前は恣意的な物なので、逆にしても問題はない
* つまり、
* pt.x を点数 P の直交座標系における y 座標
* pt.y を点数 P の直交座標系における x 座標
* と、対応させても、「プログラム上」はなんら問題ない
* (正く動くように作る事ができる)
* <反例 2>
* x と y の値の対応も恣意的な物なので、変更してもよい
* つまり、
* pt.x を点数 P の偏角
* pt.y を点数 P の動径
* 対応させても、「プログラム上」はなんら問題ない
* (正く動くように作る事ができる)
*/
typedef struct {
double x; /* 直交座標の x 座標を表すタグ名(x)とその型(double)の宣言 */
double y; /* 直交座標の y 座標を表すタグ名(y)とその型(double)の宣言 */
} Orthogonal; /* Orthogonal 型の宣言 */
/*
* void print_point ( Orthogonal pt );
* 「点」を表示する
* Orthogonal pt; 直交座標系の座標で表現された「点」
*/
void print_point ( Orthogonal pt ) {
/*
* 構造体の要素は、タグ名を利用して参照できる
*/
printf ( "( %f, %f )", pt.x, pt.y );
}
/*
* Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y )
* 点を平行移動する
* Orthogonal pt; 直交座標系の座標で表現された「点」
* double delta_x; x 軸方向の変異 (Δx)
* double delta_y; y 軸方向の変異 (Δy)
* 値 平行移動した結果
*/
Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y ) {
Orthogonal result; /* 返す値を入れる変数 */
/* x 軸方向に delta_x だけ平行移動した result.x を得るには、
pt の x 座標に delta_x を加えればよい */
result.x = pt.x + delta_x;
/* y 軸方向に delta_y だけ平行移動した result.x を得るには、
pt の y 座標に delta_y を加えればよい */
/*
** y も同様
*/
return result; /* 構造体の値が返せる */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
Orthogonal p1;
Orthogonal p2;
double dx = 10.0;
double dy = -100.0;
p1.x = 1.0; /* p1 = ( 1.0, 2.0 ) */
p1.y = 2.0;
/* 平行移動 */
printf ( "点 " );
/* 構造体は引数で、そのまま渡せる */
print_point ( p1 );
printf ( " を x 軸方向に %f, y 軸方向に %f 移動した点は ", dx, dy );
/* 構造体は、値としても取り出せるし、普通に代入もできる */
/* p1 を平行移動した点の情報は、関数の値として帰って来る */
/* それを p2 に代入する */
p2 = shift_point ( p1, dx, dy );
print_point ( p2 );
printf ( " となります。\n" );
return 0;
}
/*
* 課題 CNAME-03
*
* 20150918 20150918-03-QQQQ.c
*
* 3 次元ベクトルの差の計算
*
*/
#include <stdio.h>
/*
* 3 次元ベクトル
*/
typedef struct { /* 3 次元ベクトル */
double x; /* x 要素 */
double y; /* y 要素 */
double z; /* z 要素 */
} Vector3D; /* 新しい型 : Vector3D */
/*
* void print_Vector3D ( Vector3D v )
* ベクトルの内容を書き出す
* Vector3D v; 書き出すベクトル
*/
void print_Vector3D ( Vector3D v ) {
printf ( " %f\n", v.x ); /* v の x 要素の出力 */
printf ( "( %f )\n", v.y ); /* v の y 要素の出力 */
printf ( " %f\n", v.z ); /* v の z 要素の出力 */
/* TeX で表現するならば、
printf ( "\\left(\\begin{array}{c} %f \\\\ %f \\\ %f \
\\end{array}\\right)\n", v.x, v.y, v.z );
などととすればよい。
*/
}
/*
* Vector3D sub_Vector3D ( Vector3D dst, Vector3D src )
* 二つのベクトルの差を計算する
* Vector3D dst; 引かれるベクトル
* Vector3D src; 引くベクトル
* 帰り値 二つのベクトルの差となるベクトル
*/
Vector3D sub_Vector3D ( Vector3D dst, Vector3D src ) {
Vector3D result; /* 計算結果(差)を收める変数 */
/* x */
result.x = dst.x - src.x;
/* x 成分の計算 */
result.y = dst.y - src.y;
/* y 成分の計算 */
/* z */
/* z 成分の計算 */
return result; /* 計算した結果を値として返す */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
Vector3D dst;
Vector3D src;
dst.x = 1.2; /* 1.2 */
dst.y = 2.3; /* dst = ( 2.3 ) */
dst.z = 3.4; /* 3.4 */
src.x = -9.8; /* -9.8 */
src.y = 8.7; /* dst = ( 8.7 ) */
src.z = 0.0; /* 0.0 */
print_Vector3D ( dst ); /* dst の出力 */
printf ( "と\n" );
print_Vector3D ( src ); /* src の出力 */
printf ( "の差は\n" );
print_Vector3D ( sub_Vector3D ( dst, src ) );
printf ( "となります。\n" );
return 0;
}
#include <stdio.h>
int main(void) {
printf ( "1 < 2 = %d\n", 1 < 2 ); /* 真(1) */
printf ( "2 < 1 = %d\n", 2 < 1 ); /* 偽(0) */
return 0;
}
#include <stdio.h>
int main(void) {
printf ( "a=%d\n", 'a' ); /* 'a' という文字 */
printf ( "97=%c\n", 97 ); /* 97 という整数値 */
}
#include <stdio.h>
int main(void) {
printf ( "a=%d\n", 'a' ); /* 'a' という文字 */
printf ( "97=%c\n", 97 ); /* 97 という整数値 */
printf ( "A=%d\n", 'A' ); /* 'A' という文字 */
printf ( "65=%c\n", 65 ); /* 65 という整数値 */
/*
大文字を小文字にする
現実の世界 計算機の世界
'A' -> 'a' 65 -> 97
+32
*/
printf ( "%c -> %c\n", 'A', 'A' + 32 );
return 0;
}
#include <stdio.h>
int main(void) {
int ch; /* 処理する文字コードを記録 */
ch = getchar(); /* 最初の一文字 */
while ( ch != '.' ) { /* 入力が終わりだと '.' になる */
if ( 'A' <= ch && ch <= 'Z' ) { /* 大文字なら */
putchar ( ch + 32 ); /* 大文字を小文字に変換して、出力 */
} else {
putchar ( ch );
}
ch = getchar(); /* 次文字を読む */
}
putchar ( '.' ); /* 最期に、ピリオド */
putchar ( '\n' ); /* 改行も */
return 0;
}
#include <stdio.h>
平面上の「点」を表現したい
点には、x 座標と y 座標があるので、
一つの点 P に対して,二つの整数値 x, y を対応させる仕組みがほしい
! 数学の世界は、こうゆう場合は、「順序対」
! (x,y)
struct point { /* 構造体 point を定義 */
int x; /* メンバーは x, y の二つ */
int y;
};
/* 構造体は、型名と同じに使える */
/* 変数の宣言の時に利用する */
struct line {
struct point sp;
struct point ep;
};
struct triangle {
};
int main(void) {
int p1x;
int p1y;
struct point p1; /* struct point 型の変数 p1 の宣言 ( p1.x と p1.y が利用できる ) */
struct point p2;
p1.x = 1; /* p1 の x に 1 を代入 */
p1.y = 2; /* p1 の y に 2 を代入 */
p2 = p1; /* 他にも reutrn p1 などとできる */
return 0;
}
#include <stdio.h>
int main(void) {
int v0;
int v1;
int v2;
v0 = 1;
v1 = 2;
v2 = 3;
printf ( "v0 = %d\n", v0 );
printf ( "v1 = %d\n", v1 );
printf ( "v2 = %d\n", v2 );
return 0;
}
#include <stdio.h>
int main(void) {
int v[3]; /* v[3] -> v[0], v[1], v[2] */
v[0] = 1;
v[1] = 2;
v[2] = 3;
printf ( "v0 = %d\n", v[0] );
printf ( "v1 = %d\n", v[1] );
printf ( "v2 = %d\n", v[2] );
return 0;
}
#include <stdio.h>
int main(void) {
int v[3]; /* v[3] -> v[0], v[1], v[2] */
int i;
for ( i = 0; i < 3; i++ ) {
v[i] = i + 1;
}
for ( i = 0; i < 3; i++ ) {
printf ( "v%d = %d\n", i, v[i] );
}
return 0;
}
/*
* 2015/10/16 sample-001.c
*/
/*
* 銀行口座への振込プログラム
*
* 利用方法
* コンパイル
* cc -o sample-001.exe sample-001.c
* 実行
* ./sample-001.exe
*/
#include <stdio.h>
/*
* main
*
* 現実の世界 プログラムの世界
*
* [表現] 栗野の口座 kurino_account
*
* [事前] 100 万円 kurino_account = 1000000
*
* 振込額 10 万円 transfer_money = 100000
* <振込> kurino_account = kurino_account + transfer_money
* [事後] 110 万円
*
* <振込> という「情報上の機能」 <足し算> という「数値上の操作」
*/
int main( int argc, char *argv[] )
{
int kurino_account = 1000000; /* 栗野の銀行口座に 100 万円はいっている */
int transfer_money = 100000; /* 10 万円の振込をしたい.. */
printf ( "現在の栗野の残高は %d 万円です。\n", kurino_account / 10000 );
/* <振込> を行うプログラム */
printf ( "栗野の口座に %d 万円の振込を行います。\n", transfer_money / 10000 );
/* 「足し算」が「振込」になる */
kurino_account = kurino_account + transfer_money;
printf ( "現在の栗野の残高は %d 万円です。\n", kurino_account / 10000 );
return 0;
}
ASCII
'A' <-> 41
EBCDIC
'A' <-> C1
通信元 (ASCII) 通信先 (ASCII)
'A' -> 41 ----------------------> 41 -> 'A'
通信元 (ASCII) 通信先 (EBSDIC)
'A' -> 41 ----------------------> 41 -> 'A'
プログラムの意味は、現実との対応関係できまる
プログラムの中のデータ(数値)と現実の情報(様々)の対応は、「コーディング(符号化)」する
「コーディング」の実態は「(通常は 1 対 1 の)関数」/有限の場合は「表」
文字のコーディングの例は、ASCII コード表
現実の世界の情報は、複雑(色々なもの組み合わせ) <-> 数値の構造化
C 言語での データの構造化の一つが「構造体」
構造体の定義 : struct 構造体名 { 構造体のメンバ };
構造体の利用 : struct 構造体名 変数名;
構造体型の変数のメンバーを参照する場合は . とメンバー名を記述する
例
struct point { int x; int y };
struct porint p1;
p1.x = 1;
typedef : 既存の型に、新しい型名を付ける
例
typedef double Real;
Real v; /* double v とほぼ同じ */
v = 1.0;
printf ( "%f\n", v );
double u;
v = u; /* ワーニング (型がちがう) */
typedef struct point Point;
Point p1;
typedef struct { int x; int y; } Point;
複数の変数を纏める
メンバの型 メンバの参照 構文 関数と関係
構造体
混在可 メンバー名前 順接 ( a; b; cl ) int と同じ
配列
同じ型 整数(何番目):添字 繰返し 「違う」
「文字列」は、文字型の「配列」
"abc" == { 'a', 'b', 'c', '\0' } (* char abc[4]; *)
"abc"[0] -> 'a'
課題プログラム内の「/*名前:ここ*/」の部分を書き換え「/*この部分を完成させなさい*/」の部分にプログラムを追加して、プログラムを完成させます。
なお「名前(P,Q,R,..)」の部分が同じ所には同じものが入ります。
Download : 20151016-01.c ( SJIS 版 )
/*
* 課題 20151009-01
*
* 2015/10/09 20151009-01-QQQQ.c
*
* 極座標で表現されている点 Q から、それと原点に対して対称な点 R を求める
*/
#include <stdio.h>
#include <math.h> /* sin, cos を利用するので.. */
/*
* void print_polar ( char name, double r, double a )
* 極座標の表示
* char name; 点の名前
* double r; 極座標の動径
* double a; 極座標の偏角
*/
void print_polar ( char name, double r, double a ) {
printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a );
}
/*
* main
*/
int main( int argc, char *argv[] )
{
/*
点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 )
*/
double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */
double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */
double R_polar_radius; /* 点 Q と原点対称な点 R の動径 */
double R_polar_argument; /* 点 Q と原点対称な点 R の偏角 */
/*
* 点 Q の表示
*/
print_polar ( 'Q', Q_polar_radius, Q_polar_argument );
/*
* 点 R の計算
*/
/* 対称なので原点から距離は同じ */
/*
** この部分を完成させなさい
*/
/* 180(π)だけ回転 */
/*
** この部分を完成させなさい
*/
/*
* 点 R の表示
*/
print_polar ( 'R', R_polar_radius, R_polar_argument );
return 0;
}
$ ./20151016-01-QQQQ.exe 点 Q の極座標は (7.000000,1.047198) です。 点 R の極座標は (7.000000,4.188790) です。 $
Download : 20151016-02.c ( SJIS 版 )
/*
* 課題 CNAME-02
*
* 20151009 20151009-02-QQQQ.c
*
* 構造体を利用し、平行移動を行う関数を作成する
*/
#include <stdio.h>
/*
* 最初に、直交座標で「点」を表現する型 (Orthogonal) を作ってしまう
* Orthogonal 型は、二つの要素 ( x, y ) からなり、それらの型は double 型
*
* Orthogonal <----> double * double
* \in \in
* p <----> ( p.x, p.y )
*
* 残念ながら、C 言語の型定義機能で出来るのは「形(式)」の定義だけで
* 「意味」の定義はできない
* 「形」に「意味」をつけるのは、「それを扱うプログラム(関数)」の役目
*
* コーディングルール:
* 現実の世界 コンピュータの世界
*
* 平面上の点 P : ( x, y ) Orthogonal 型の pt : ( pt.x, pt.y )
* P の x 座標 : 3 pt.x = 3.0
* P の y 座標 : -2 pt.y = -2.0
*
* [注意]
* Orthogonal 型の pt を「現実の点 P」に対応させ、
* pt.x を点数 P の直交座標系における x 座標
* pt.y を点数 P の直交座標系における y 座標
* とする対応は、「决め(る)事」であり、
* 「必然的に『決る物』」では *ない*
* <反例 1>
* x と y の名前は恣意的な物なので、逆にしても問題はない
* つまり、
* pt.x を点数 P の直交座標系における y 座標
* pt.y を点数 P の直交座標系における x 座標
* と、対応させても、「プログラム上」はなんら問題ない
* (正く動くように作る事ができる)
* <反例 2>
* x と y の値の対応も恣意的な物なので、変更してもよい
* つまり、
* pt.x を点数 P の偏角
* pt.y を点数 P の動径
* 対応させても、「プログラム上」はなんら問題ない
* (正く動くように作る事ができる)
*/
typedef struct {
double x; /* 直交座標の x 座標を表すタグ名(x)とその型(double)の宣言 */
double y; /* 直交座標の y 座標を表すタグ名(y)とその型(double)の宣言 */
} Orthogonal; /* Orthogonal 型の宣言 */
/*
* void print_point ( Orthogonal pt );
* 「点」を表示する
* Orthogonal pt; 直交座標系の座標で表現された「点」
*/
void print_point ( Orthogonal pt ) {
/*
* 構造体の要素は、タグ名を利用して参照できる
*/
printf ( "( %f, %f )", pt.x, pt.y );
}
/*
* Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y )
* 点を平行移動する
* Orthogonal pt; 直交座標系の座標で表現された「点」
* double delta_x; x 軸方向の変異 (Δx)
* double delta_y; y 軸方向の変異 (Δy)
* 値 平行移動した結果
*/
Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y ) {
Orthogonal result; /* 返す値を入れる変数 */
/* x 軸方向に delta_x だけ平行移動した result.x を得るには、
pt の x 座標に delta_x を加えればよい */
/*
** この部分を完成させなさい
*/
/* y 軸方向に delta_y だけ平行移動した result.x を得るには、
pt の y 座標に delta_y を加えればよい */
/*
** この部分を完成させなさい
*/
return result; /* 構造体の値が返せる */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
Orthogonal p1;
Orthogonal p2;
double dx = 10.0;
double dy = -100.0;
p1.x = 1.0; /* p1 = ( 1.0, 2.0 ) */
p1.y = 2.0;
/* 平行移動 */
printf ( "点 " );
/* 構造体は引数で、そのまま渡せる */
print_point ( p1 );
printf ( " を x 軸方向に %f, y 軸方向に %f 移動した点は ", dx, dy );
/* 構造体は、値としても取り出せるし、普通に代入もできる */
/*
** この部分を完成させなさい
*/
print_point ( p2 );
printf ( " となります。\n" );
return 0;
}
123 987 456
$ ./20151016-02-QQQQ.exe
点 ( 1.000000, 2.000000 ) を x 軸方向に 10.000000, y 軸方向に -100.000000 \
移動した点は ( 11.000000, -98.000000 ) となります。
$
Download : 20151016-03.c ( SJIS 版 )
/*
* 課題 CNAME-03
*
* 20150918 20150918-03-QQQQ.c
*
* 3 次元ベクトルの差の計算
*
*/
#include <stdio.h>
/*
* 3 次元ベクトル
*/
typedef struct { /* 3 次元ベクトル */
double x; /* x 要素 */
double y; /* y 要素 */
double z; /* z 要素 */
} Vector3D; /* 新しい型 : Vector3D */
/*
* void print_Vector3D ( Vector3D v )
* ベクトルの内容を書き出す
* Vector3D v; 書き出すベクトル
*/
void print_Vector3D ( Vector3D v ) {
printf ( " %f\n", v.x ); /* v の x 要素の出力 */
printf ( "( %f )\n", v.y ); /* v の y 要素の出力 */
printf ( " %f\n", v.z ); /* v の z 要素の出力 */
/* TeX で表現するならば、
printf ( "\\left(\\begin{array}{c} %f \\\\ %f \\\ %f \
\\end{array}\\right)\n", v.x, v.y, v.z );
などととすればよい。
*/
}
/*
* Vector3D sub_Vector3D ( Vector3D dst, Vector3D src )
* 二つのベクトルの差を計算する
* Vector3D dst; 引かれるベクトル
* Vector3D src; 引くベクトル
* 帰り値 二つのベクトルの差となるベクトル
*/
Vector3D sub_Vector3D ( Vector3D dst, Vector3D src ) {
Vector3D result; /* 計算結果(差)を收める変数 */
/*
** この部分を完成させなさい
*/
/* x 成分の計算 */
result.y = dst.y - src.y;
/* y 成分の計算 */
/*
** この部分を完成させなさい
*/
/* z 成分の計算 */
return result; /* 計算した結果を値として返す */
}
/*
* main
*/
int main( int argc, char *argv[] )
{
Vector3D dst;
Vector3D src;
dst.x = 1.2; /* 1.2 */
dst.y = 2.3; /* dst = ( 2.3 ) */
dst.z = 3.4; /* 3.4 */
src.x = -9.8; /* -9.8 */
src.y = 8.7; /* dst = ( 8.7 ) */
src.z = 0.0; /* 0.0 */
print_Vector3D ( dst ); /* dst の出力 */
printf ( "と\n" );
print_Vector3D ( src ); /* src の出力 */
printf ( "の差は\n" );
print_Vector3D ( sub_Vector3D ( dst, src ) );
printf ( "となります。\n" );
return 0;
}
$ ./20151016-03-QQQQ.exe 1.200000 ( 2.300000 ) 3.400000 と -9.800000 ( 8.700000 ) 0.000000 の差は 11.000000 ( -6.400000 ) 3.400000 となります。 $