Download : sample-001.c ( utf8 版 )
/* * CDATE sample-001.c */ /* * 複素数型の定義と計算 * * 利用方法 * コンパイル * cc -I..\include -o sample-001.exe sample-001.c * 実行 * ./sample-001.exe */ #include <stdio.h> /* * 複素数型を表す Complex の定義 * * 複素数 z は、二つの実数 x, y を用いて * z = x + yi ( i は虚数単位 ) * と表現できる。 * C 言語では実数を表すのに浮動小数点数型の double を用いる * 型名 ( Complex ) を大文字で始めるのは「ソフトウェア概論ルール」 */ typedef struct { double real; /* 実部 */ double imaginary; /* 虚部 */ } Complex; /* 複素数型 */ /* * Complex make_Complex ( double x, double y ) * Complex 型の数を作り、返す * x, y -> z = x + yi */ Complex make_Complex ( double x, double y ) { Complex newComplex; /* 新しく作られる複素数 */ newComplex.real = x; /* 新しく作られた複素数の実部は x */ newComplex.imaginary = y; /* 新しく作られた複素数の実部は y */ return newComplex; /* 新しく作られる複素数を値として返す */ } /* * double real_part ( Complex z ) * Complex 型の数の実部を返す * z = x + yi -> x */ double real_part ( Complex z ) { return z.real; } /* * double imaginary_part ( Complex z ) * Complex 型の数の実部を返す * z = x + yi -> x */ double imaginary_part ( Complex z ) { return z.imaginary; } /* * print_Complex ( Complex z ) * Complex 型の数の出力 * z = x + y i だが、y < 0 の時は z = x - (-y) i となるように工夫 */ void print_Complex ( Complex z ) { if ( z.imaginary > 0 ) { printf ( "%f + %f i", z.real, z.imaginary ); } else { printf ( "%f - %f i", z.real, - z.imaginary ); } } /* * Complex add_Complex ( Complex z1, Complex z2 ) * Complex 型の数の足し算 * z1 = x1 + y1 i * z2 = x2 + y2 i * -> z1 + z2 = ( x1 + x2 ) + ( y1 + y2 ) i */ Complex add_Complex ( Complex z1, Complex z2 ) { Complex result; /* 複素数の和の実部は、実部の和 */ result.real = z1.real + z2.real; /* 複素数の和の虚部は、虚部の和 */ result.imaginary = z1.imaginary + z2.imaginary; return result; } /* * main */ int main( int argc, char *argv[] ) { Complex z1 = make_Complex ( 2.0, 3.0 ); /* z1 = 2 + 3i */ Complex z2 = make_Complex ( -1.0, 5.0 ); /* z2 = -1 + 5i */ Complex z3; printf ( " z1 ( = " ); print_Complex ( z1 ); printf ( " ) と、" ); printf ( " z2 ( = " ); print_Complex ( z2 ); printf ( " ) の和は 、\n" ); z3 = add_Complex ( z1, z2 ); /* z3 <- z1 + z2 */ print_Complex ( z3 ); printf ( " です。\n" ); return 0; }
$ ./sample-001.exe z1 ( = 2.000000 + 3.000000 i ) と、 z2 ( = -1.000000 + 5.000000 i ) の和は 、 1.000000 + 8.000000 i です。 $
Download : sample-002.c ( utf8 版 )
/* * 2016/10/21 sample-002.c */ /* * 二次元行列型の定義と計算 * * 利用方法 * コンパイル * cc -I..\include -o sample-002.exe sample-002.c * 実行 * ./sample-002.exe */ #include <stdio.h> /* * */ #define DIMENSION 2 /* 二次元 */ /* * 行列 A は、2 x 2 = 4 の要素をもっている * * A = ( 1 2 ) = ( a[0][0] a[0][1] ) * 3 4 a[1][0] a[1][1] * */ typedef struct { double a[DIMENSION][DIMENSION]; /* 二次元の行列の要素は 2 x 2 */ } Matrix2D; /* Matrix2D 型の宣言 */ /* * Matrix2D make_Matrix2D ( double a, double b, double c, double d ) * 「行列」を作成する * * A = ( a b ) = ( a[0][0], a[0][1] ) * ( c d ) ( a[1][0], a[1][1] ) */ Matrix2D make_Matrix2D ( double a, double b, double c, double d ) { Matrix2D newMatrix2D; /* 新しい行列 */ newMatrix2D.a[0][0] = a; newMatrix2D.a[0][1] = b; newMatrix2D.a[1][0] = c; newMatrix2D.a[1][1] = d; return newMatrix2D; } /* * void print_Matrix2D ( Matrix2D ary ); * 「行列」を表示する (表示の都合上、常に独立した行に出力する) * Matrix2D ary; 二次元行列 */ void print_Matrix2D ( Matrix2D ary ) { int r; /* 行 ( row ) */ int c; /* 列 ( colomun ) */ for ( r = 0; r < DIMENSION; r++ ) { printf ( "(" ); for ( c = 0; c < DIMENSION; c++ ) { printf ( " %10.5f", ary.a[r][c] ); /* * [注意] %10.5f は %f と同じく浮動小数点数を出力するが * 「全体の桁数は 10 桁、小数点数以下は 5 桁にする」 * という「表示上の指定」も加わっている * 詳しくは google で「printf 書式」で検索 */ } printf ( " )\n" ); } } /* * Matrix2D add_Matrix2D ( Matrix2D a1, Matrix2D a2 ); * 「行列」の和 * * ( a b ) + ( e f ) = ( a + e b + f ) * ( c d ) ( g h ) ( c + g g + h ) */ Matrix2D add_Matrix2D ( Matrix2D a1, Matrix2D a2 ) { Matrix2D result; /* 計算結果 */ int r; /* 行 ( row ) */ int c; /* 列 ( colomun ) */ for ( r = 0; r < DIMENSION; r++ ) { for ( c = 0; c < DIMENSION; c++ ) { result.a[r][c] = a1.a[r][c] + a2.a[r][c]; } } return result; } /* * main */ int main( int argc, char *argv[] ) { /* a1 = ( 1 2 ) ( 3 -1 ) a2 = ( -3 1 ) ( 1 -2 ) */ Matrix2D a1 = make_Matrix2D ( 1.0, 2.0, 3.0, -1.0 ); Matrix2D a2 = make_Matrix2D ( -3.0, 1.0, 1.0, -2.0 ); /* 行列 a1 と行列 a2 の和を計算して出力する */ print_Matrix2D ( a1 ); printf ( " と、 \n" ); print_Matrix2D ( a2 ); printf ( " との、和は \n" ); print_Matrix2D ( a ); printf ( " です。\n" ); return 0; }
$ ./sample-002.exe z1 ( = 2.000000 + 3.000000 i ) と、 z2 ( = -1.000000 + 5.000000 i ) の和は 、 1.000000 + 8.000000 i です。 $
課題プログラム内の「/*名前:ここ*/」の部分を書き換え「/*この部分を完成させなさい*/」の部分にプログラムを追加して、プログラムを完成させます。
なお「名前(P,Q,R,..)」の部分が同じ所には同じものが入ります。
Download : 20161021-01.c ( utf8 版 )
/* * 課題 20161021-01 * * 2016/10/21 20161021-01-QQQQ.c * * 複素数型の四則 */ #include <stdio.h> /* * 複素数型の定義と計算 * * 利用方法 * コンパイル * cc -Ic:\usr\c\include -o BASENAME.exe 20161021-01-QQQQ.c * 実行 * BASENAME */ #include <stdio.h> /* * 複素数型を表す Complex の定義 * * 複素数 z は、二つの実数 x, y を用いて * z = x + yi ( i は虚数単位 ) * と表現できる。 * C 言語では実数を表すのに浮動小数点数型の double を用いる * 型名 ( Complex ) を大文字で始めるのは「ソフトウェア概論ルール」 */ typedef struct { double real; /* 実部 */ double imaginary; /* 虚部 */ } Complex; /* 複素数型 */ /* * Complex make_Complex ( double x, double y ) * Complex 型の数を作り、返す * x, y -> z = x + yi */ Complex make_Complex ( double x, double y ) { Complex newComplex; /* 新しく作られる複素数 */ newComplex.real = x; /* 新しく作られた複素数の実部は x */ newComplex.imaginary = y; /* 新しく作られた複素数の実部は y */ return newComplex; /* 新しく作られる複素数を値として返す */ } /* * double real_part ( Complex z ) * Complex 型の数の実部を返す * z = x + yi -> x */ double real_part ( Complex z ) { return z.real; } /* * double imaginary_part ( Complex z ) * Complex 型の数の実部を返す * z = x + yi -> x */ double imaginary_part ( Complex z ) { return z.imaginary; } /* * print_Complex ( Complex z ) * Complex 型の数の出力 * z = x + y i だが、y < 0 の時は z = x - (-y) i となるように工夫 */ void print_Complex ( Complex z ) { if ( z.imaginary > 0 ) { printf ( "%f + %f i", z.real, z.imaginary ); } else { printf ( "%f - %f i", z.real, - z.imaginary ); } } /* * Complex add_Complex ( Complex z1, Complex z2 ) * Complex 型の数の足し算 * z1 = x1 + y1 i * z2 = x2 + y2 i * -> z1 + z2 = ( x1 + x2 ) + ( y1 + y2 ) i */ Complex add_Complex ( Complex z1, Complex z2 ) { Complex result; /* 複素数の和の実部は、実部の和 */ result.real = z1.real + z2.real; /* 複素数の和の虚部は、虚部の和 */ result.imaginary = z1.imaginary + z2.imaginary; return result; } /* * Complex sub_Complex ( Complex z1, Complex z2 ) * Complex 型の数の引き算 * z1 = x1 + y1 i * z2 = x2 + y2 i * -> z1 - z2 = ( x1 - x2 ) + ( y1 - y2 ) i */ Complex sub_Complex ( Complex z1, Complex z2 ) { Complex result; /* 複素数の差の実部は、実部の差 */ result.real = z1.real - z2.real; /* 複素数の差の虚部は、虚部の差 */ /* ** この部分を完成させなさい */ return result; } /* * Complex mul_Complex ( Complex z1, Complex z2 ) * Complex 型の数のかけ算 * z1 = x1 + y1 i * z2 = x2 + y2 i * の時 * z1 * z2 = (x1 * x2 - y1 * y2) + (x1 * y2 + x2 * y1) i */ Complex mul_Complex ( Complex z1, Complex z2 ) { Complex result; result.real = z1.real * z2.real - z1.imaginary * z2.imaginary; /* ** この部分を完成させなさい */ return result; } /* * Complex div_Complex ( Complex z1, Complex z2 ) * Complex 型の数の割り算 * z1 = x1 + y1 i * z2 = x2 + y2 i * の時 * z1 / z2 = ( x1 * x2 + y1 * y2) / ( x2^2 + y2^2 ) * + ( (- x1 * y2 + x2 * y1) / ( x2^2 + y2^2 ) ) i */ Complex div_Complex ( Complex z1, Complex z2 ) { Complex result; double denominator = z2.real * z2.real + z2.imaginary *z2.imaginary; /* 実部、虚部の割る数 |z2|^2 を予め計算しておく */ /* ** この部分を完成させなさい */ result.imaginary = ( - z1.real * z2.imaginary + z1.imaginary * z2.real ) / denominator; return result; } /* * print_result 演算結果を出力する */ void print_result ( Complex z1, Complex z2, char *operator, Complex z ) { print_Complex ( z1 ); printf ( " と、 " ); print_Complex ( z2 ); printf ( " との、%s は ", operator ); print_Complex ( z ); printf ( " です。\n" ); } /* * main */ int main( int argc, char *argv[] ) { Complex z1 = make_Complex ( 20.0, -15.0 ); /* z1 = 20 - 15i */ Complex z2 = make_Complex ( 1.0, 2.0 ); /* z2 = 1 + 2i */ /* 和の出力 */ print_result ( z1, z2, "和", add_Complex ( z1, z2 ) ); /* 差の出力 */ /* ** この部分を完成させなさい */ /* 積の出力 */ /* ** この部分を完成させなさい */ /* 商の出力 */ print_result ( z1, z2, "商", div_Complex ( z1, z2 ) ); return 0; }
$ ./20161021-01-QQQQ.exe 20.000000 - 15.000000 i と、 1.000000 + 2.000000 i との、和 は 21.000000 - 13.000000 i です。 20.000000 - 15.000000 i と、 1.000000 + 2.000000 i との、差 は 19.000000 - 17.000000 i です。 20.000000 - 15.000000 i と、 1.000000 + 2.000000 i との、積 は 50.000000 + 25.000000 i です。 20.000000 - 15.000000 i と、 1.000000 + 2.000000 i との、商 は -2.000000 - 11.000000 i です。 $
Download : 20161021-02.c ( utf8 版 )
/* * 課題 20161021-02 * * 20161021 20161021-02-QQQQ.c * * 二次元行列型の定義と計算 */ #include <stdio.h> /* * */ #define DIMENSION 2 /* 二次元 */ /* * 行列 A は、2 x 2 = 4 の要素をもっている * * A = ( 1 2 ) = ( a[0][0] a[0][1] ) * 3 4 a[1][0] a[1][1] * */ typedef struct { double a[DIMENSION][DIMENSION]; /* 二次元の行列の要素は 2 x 2 */ } Matrix2D; /* Matrix2D 型の宣言 */ /* * Matrix2D make_Matrix2D ( double a, double b, double c, double d ) * 「行列」を作成する * * A = ( a b ) = ( a[0][0], a[0][1] ) * ( c d ) ( a[1][0], a[1][1] ) */ Matrix2D make_Matrix2D ( double a, double b, double c, double d ) { Matrix2D newMatrix2D; /* 新しい行列 */ newMatrix2D.a[0][0] = a; newMatrix2D.a[0][1] = b; newMatrix2D.a[1][0] = c; newMatrix2D.a[1][1] = d; return newMatrix2D; } /* * void print_Matrix2D ( Matrix2D ary ); * 「行列」を表示する (表示の都合上、常に独立した行に出力する) * Matrix2D ary; 二次元行列 */ void print_Matrix2D ( Matrix2D ary ) { int r; /* 行 ( row ) */ int c; /* 列 ( colomun ) */ for ( r = 0; r < DIMENSION; r++ ) { printf ( "(" ); for ( c = 0; c < DIMENSION; c++ ) { printf ( " %10.5f", ary.a[r][c] ); /* * [注意] %10.5f は %f と同じく浮動小数点数を出力するが * 「全体の桁数は 10 桁、小数点数以下は 5 桁にする」 * という「表示上の指定」も加わっている * 詳しくは google で「printf 書式」で検索 */ } printf ( " )\n" ); } } /* * Matrix2D add_Matrix2D ( Matrix2D a1, Matrix2D a2 ); * 「行列」の和 * * ( a b ) + ( e f ) = ( a + e b + f ) * ( c d ) ( g h ) ( c + g g + h ) */ Matrix2D add_Matrix2D ( Matrix2D a1, Matrix2D a2 ) { Matrix2D result; /* 計算結果 */ int r; /* 行 ( row ) */ int c; /* 列 ( colomun ) */ for ( r = 0; r < DIMENSION; r++ ) { for ( c = 0; c < DIMENSION; c++ ) { result.a[r][c] = a1.a[r][c] + a2.a[r][c]; } } return result; } /* * Matrix2D sub_Matrix2D ( Matrix2D a1, Matrix2D a2 ); * 「行列」の差 * * ( a b ) - ( e f ) = ( a - e b - f ) * ( c d ) ( g h ) ( c - g g - h ) */ Matrix2D sub_Matrix2D ( Matrix2D a1, Matrix2D a2 ) { Matrix2D result; /* 計算結果 */ int r; /* 行 ( row ) */ int c; /* 列 ( colomun ) */ for ( r = 0; r < DIMENSION; r++ ) { for ( c = 0; c < DIMENSION; c++ ) { /* ** この部分を完成させなさい */ } } return result; } /* * Matrix2D mul_Matrix2D ( Matrix2D a1, Matrix2D a2 ); * 「行列」の積 * * ( a b ) ( e f ) = ( a * e + b * g a * f + b * h ) * ( c d ) ( g h ) ( c * e + d * g c * f + d * h ) */ Matrix2D mul_Matrix2D ( Matrix2D a1, Matrix2D a2 ) { Matrix2D result; /* 計算結果 */ int r; /* 行 ( row ) */ int c; /* 列 ( colomun ) */ int i; for ( r = 0; r < DIMENSION; r++ ) { for ( c = 0; c < DIMENSION; c++ ) { double products = 0.0; /* a1 の r 行と a2 の c 列の内積の結果 */ /* a1 の r 行と a2 の c 列の内積を計算する */ /* ** この部分を完成させなさい */ result.a[r][c] = products; } } return result; } /* * print_result 演算結果を出力する */ void print_result ( Matrix2D a1, Matrix2D a2, char *operator, Matrix2D a ) { printf ( "%s の計算\n", operator ); print_Matrix2D ( a1 ); printf ( " と、 \n" ); print_Matrix2D ( a2 ); printf ( " との、%s は \n", operator ); print_Matrix2D ( a ); printf ( " です。\n\n" ); } /* * main */ int main( int argc, char *argv[] ) { /* a1 = ( 1 2 ) ( 3 -1 ) a2 = ( -3 1 ) ( 1 -2 ) */ Matrix2D a1 = make_Matrix2D ( 1.0, 2.0, 3.0, -1.0 ); Matrix2D a2 = make_Matrix2D ( -3.0, 1.0, 1.0, -2.0 ); /* 和の出力 */ print_result ( a1, a2, "和", add_Matrix2D ( a1, a2 ) ); /* 差の出力 */ /* ** この部分を完成させなさい */ /* 積の出力 */ /* ** この部分を完成させなさい */ return 0; }
123 987 456
$ ./20161021-02-QQQQ.exe 和 の計算 ( 1.00000 2.00000 ) ( 3.00000 -1.00000 ) と、 ( -3.00000 1.00000 ) ( 1.00000 -2.00000 ) との、和 は ( -2.00000 3.00000 ) ( 4.00000 -3.00000 ) です。 差 の計算 ( 1.00000 2.00000 ) ( 3.00000 -1.00000 ) と、 ( -3.00000 1.00000 ) ( 1.00000 -2.00000 ) との、差 は ( 4.00000 1.00000 ) ( 2.00000 1.00000 ) です。 積 の計算 ( 1.00000 2.00000 ) ( 3.00000 -1.00000 ) と、 ( -3.00000 1.00000 ) ( 1.00000 -2.00000 ) との、積 は ( -1.00000 -3.00000 ) ( -10.00000 5.00000 ) です。 $
Download : 20161021-03.c ( utf8 版 )
/* * 課題 20161021-03 * * 20161021 20161021-03-QQQQ.c * * 整数型の配列を作り、それに 5 個のデータを入力し * その値を 5 倍にしたものと 2 分の 1 にした値を * それぞれ、画面に出力するプログラムを作りなさい * */ #include <stdio.h> int main(int ac, char *av[]) { int a[5]; /* サイズ 5 の整数型の配列 */ int i; /* 添字変数 i を宣言 */ for ( i = 0; i < 5; i++ ) { /* 配列 a に数値を読み込む */ scanf ( "%d", &a[i] ); } /* 入力された個々の値を 5 倍した物を出力 */ for ( i = 0; i < 5; i++ ) { printf ( "%d\n", /* p:ここ */ ); /* 5 倍 */ } /* 入力された個々の値を 1/2 した物を出力 */ for ( i = 0; i < 5; i++ ) { printf ( "%d\n", /* q:ここ */ ); /* 2 分の 1 */ } return 0; }
3 8 13 2 4
$ ./20161021-03-QQQQ.exe 3 8 13 2 4 15 40 65 10 20 1 4 6 1 2 $