Download : sample-001.c
/* * 2019/11/08 sample-001.c */ /* * 銀行口座への振込プログラム * * 利用方法 * コンパイル * cc -c sample-001.c * リンク * cc -o sample-001.exe sample-001.c * 実行 * ./sample-001.exe */ #include <stdio.h> /* * main * * 現実の世界 プログラムの世界 * * [表現] 栗野の口座 kurino_account * * [事前] 100 万円 kurino_account = 1000000 * * 振込額 10 万円 transfer_money = 100000 * <振込> kurino_account = kurino_account + transfer_money * [事後] 110 万円 * * <振込> という「情報上の機能」 <足し算> という「数値上の操作」 */ int main( int argc, char *argv[] ) { int kurino_account = 1000000; /* 栗野の銀行口座に 100 万円入っている */ int transfer_money = 100000; /* 10 万円の振込をしたい.. */ printf ( "現在の栗野の残高は %d 万円です。\n", kurino_account / 10000 ); /* <振込> を行うプログラム */ printf ( "栗野の口座に %d 万円の振込を行います。\n", transfer_money / 10000 ); /* 「足し算」が「振込」になる */ kurino_account = kurino_account + transfer_money; printf ( "現在の栗野の残高は %d 万円です。\n", kurino_account / 10000 ); return 0; }
$ ./sample-001.exe 現在の栗野の残高は 100 万円です。 栗野の口座に 10 万円の振込を行います。 現在の栗野の残高は 110 万円です。 $
Download : sample-002.c
/* * 2019/11/08 sample-002.c */ /* * ASCII Code を利用した「文字」の操作 * * 利用方法 * コンパイル * cc -c sample-002.c * リンク * cc -o sample-002.exe sample-002.c * 実行 * ./sample-002.exe */ #include <stdio.h> /* * main */ int main( int argc, char *argv[] ) { char mathematics_record = 'B'; /* 現在の数学の評価は 'B' */ printf ( "数学の前評価の結果は %c でした。\n", mathematics_record ); printf ( "再度確認した所、採点ミスが見付かり、加点した所、グレードが一つ高くなりました。\n" ); /* * */ /* 成績のグレードを高くするために 'B' を 'A' にする */ /* 現実の世界 データ/表現 プログラムの世界 ASICC Code ('B'=66, 'A'=65) グレードを一段階「高く」する : 'B' -----> 'A' 66 -----> 65 : 1 減らす */ mathematics_record = mathematics_record - 1; /* * */ printf ( "その結果、数学の最終評価は %c になりました。\n", mathematics_record ); return 0; }
$ ./sample-002.exe 数学の前評価の結果は B でした。 再度確認した所、採点ミスが見付かり、加点した所、グレードが一つ高くなりました。 その結果、数学の最終評価は A になりました。 $
Download : sample-003.c
/* * 2019/11/08 sample-003.c */ /* * 平面上の「点」の二つの表現銀行口座への振込プログラム * * 利用方法 * コンパイル * cc -c sample-003.c * リンク ( M_PI,sin,cos を利用するので 「-lm」が必須 ) * cc -o sample-003.exe sample-003.c -lm * 実行 * ./sample-003.exe */ #include <stdio.h> #include <math.h> /* sin, cos を利用するので.. */ /* * void print_orthogonal ( char name, double x, double y ) * 直交座標の表示 * char name; 点の名前 * double x; 直交座標の X 座標 * double y; 直交座標の Y 座標 */ void print_orthogonal ( char name, double x, double y ) { printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y ); } /* * void print_polar ( char name, double r, double a ) * 極座標の表示 * char name; 点の名前 * double r; 極座標の動径 * double a; 極座標の偏角 */ void print_polar ( char name, double r, double a ) { printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a ); } /* * main */ int main( int argc, char *argv[] ) { /* 点 P : 座標 (2,3) */ double P_orthogonal_x = 2.0; /* 点 P の直交座標系の x 座標 */ double P_orthogonal_y = 3.0; /* 点 P の直交座標系の y 座標 */ double P_polar_radius; /* 点 P の極座標系の動径 */ double P_polar_argument; /* 点 P の極座標系の偏角 */ /* 点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 ) */ double Q_orthogonal_x; /* 点 Q の直交座標系の x 座標 */ double Q_orthogonal_y; /* 点 Q の直交座標系の y 座標 */ double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */ double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */ /* * 点 P の表示 */ print_orthogonal ( 'P', P_orthogonal_x, P_orthogonal_y ); /* * r = \sqrt{x^2+y^2} なので */ P_polar_radius = sqrt ( P_orthogonal_x * P_orthogonal_x + P_orthogonal_y * P_orthogonal_y ); /* * a = \tan^{-1}{y/x} なので * cf. http://www1.cts.ne.jp/~clab/hsample/Math/Math2.html */ P_polar_argument = atan ( P_orthogonal_y / P_orthogonal_x ); print_polar ( 'P', P_polar_radius , P_polar_argument ); /* * 点 Q の表示 */ print_polar ( 'Q', Q_polar_radius, Q_polar_argument ); /* * x = r \cos{a} なので */ Q_orthogonal_x = Q_polar_radius * cos( Q_polar_argument ); /* * y = r \sin{a} なので */ Q_orthogonal_y = Q_polar_radius * sin( Q_polar_argument ); print_orthogonal ( 'Q', Q_orthogonal_x, Q_orthogonal_y ); return 0; }
$ ./sample-003.exe 点 P の直交座標は (2.000000,3.000000) です。 点 P の極座標は (3.605551,0.982794) です。 点 Q の極座標は (7.000000,1.047198) です。 点 Q の直交座標は (3.500000,6.062178) です。 $
Download : sample-004.c
/* * 2019/11/08 sample-004.c */ /* * 直交座標で表現されている点 Q から、それと原点に対して対称な点 R を求める * * 利用方法 * コンパイル * cc -c sample-004.c * リンク * cc -o sample-004.exe sample-004.c * 実行 * ./sample-004.exe */ #include <stdio.h> /* * void print_orthogonal ( char name, double x, double y ) * 直交座標の表示 * char name; 点の名前 * double x; 直交座標の X 座標 * double y; 直交座標の Y 座標 */ void print_orthogonal ( char name, double x, double y ) { printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y ); } /* * main */ int main( int argc, char *argv[] ) { /* 点 P : 座標 (2,3) */ double P_orthogonal_x = 2.0; /* 点 P の直交座標系の x 座標 */ double P_orthogonal_y = 3.0; /* 点 P の直交座標系の y 座標 */ double R_orthogonal_x; /* 点 P と原点対称な点 R の x 座標 */ double R_orthogonal_y; /* 点 P と原点対称な点 R の y 座標 */ /* * 点 P の表示 */ print_orthogonal ( 'P', P_orthogonal_x, P_orthogonal_y ); /* * 点 R の計算 */ /* R の x 座標は P の x 座標の符号を変えた物 */ R_orthogonal_x = - P_orthogonal_x; /* R の y 座標は P の y 座標の符号を変えた物 */ R_orthogonal_y = - P_orthogonal_y; /* * 点 R の表示 */ print_orthogonal ( 'R', R_orthogonal_x, R_orthogonal_y ); return 0; }
$ ./sample-004.exe 点 P の直交座標は (2.000000,3.000000) です。 点 R の直交座標は (-2.000000,-3.000000) です。 $
Download : sample-005.c
/* * 2019/11/08 sample-005.c */ /* * 平面上の点を扱う * * 利用方法 * コンパイル * cc -c sample-005.c * リンク * cc -o sample-005.exe sample-005.c -lm * 実行 * ./sample-005.exe */ #include <stdio.h> #include <math.h> /* sqrt を利用するので必要 (-lm も忘れずに ) */ /* * void print_point ( double px, double py ) * 「点」を表示する * double px -- 「点」の x 座標 * double py -- 「点」の y 座標 */ void print_point ( double px, double py ) { printf ( "( %f, %f )", px, py ); } /* * double point_distance ( double p1x, double p1y, double p2x, double p2y ) * ニ「点」間の距離を返す * double p1x -- 「始点」の x 座標 * double p1y -- 「始点」の y 座標 * double p2x -- 「終点」の x 座標 * double p2y -- 「終点」の y 座標 */ double point_distance ( double p1x, double p1y, double p2x, double p2y ) { double dx = p2x - p1x; /* x 座標の差 */ double dy = p2y - p1y; /* y 座標の差 */ return sqrt ( dx*dx + dy*dy ); } /* * main */ int main( int argc, char *argv[] ) { double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */ double p1y = 2.0; double p2x = 4.0; /* p2 = ( 4.0, 6.0 ) */ double p2y = 6.0; printf ( "始点 " ); print_point ( p1x, p1y ); printf ( " と終点 " ); print_point ( p2x, p2y ); printf ( " との距離は %f です。\n", point_distance ( p1x, p1y, p2x, p2y ) ); return 0; }
$ ./sample-005.exe 始点 ( 1.000000, 2.000000 ) と終点 ( 4.000000, 6.000000 ) との距離は 5.000000 です。 $
Download : sample-006.c
/* * 2019/11/08 sample-006.c */ /* * 平面上の点の操作 * * 利用方法 * コンパイル * cc -c sample-006.c * リンク * cc -o sample-006.exe sample-006.c -lm * 実行 * ./sample-006.exe */ #include <stdio.h> #include <math.h> /* sqrt を利用するので必要 (-lm も忘れずに ) */ /* * void print_point ( double px, double py ) * 「点」を表示する * double px -- 「点」の x 座標 * double py -- 「点」の y 座標 */ void print_point ( double px, double py ) { printf ( "( %f, %f )", px, py ); } /* * void mirror_x_point ( double py ) * x 軸に対し線対称の「点」の y 座標を求める * double py -- 「点」の y 座標 */ double mirror_x_point ( double py ) { return - py; } /* * void mirror_y_point ( double px ) * y 軸に対し線対称の「点」の x 座標を求める * double px -- 「点」の x 座標 */ double mirror_y_point ( double px ) { return - px; } /* * main */ int main( int argc, char *argv[] ) { double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */ double p1y = 2.0; double p2x; double p2y; /* x 軸に対して線対象 */ printf ( "点 " ); print_point ( p1x, p1y ); printf ( " と x 軸に対して線対称な点は " ); p2x = p1x; /* x 座標は変らない */ p2y = mirror_x_point ( p1y ); /* y 座標のみ計算 */ print_point ( p2x, p2y ); printf ( " となります。\n" ); /* y 軸に線対象 */ printf ( "点 " ); print_point ( p1x, p1y ); printf ( " と y 軸に対して線対称な点は " ); p2x = mirror_x_point ( p1x ); /* x 座標のみ計算 */ p2y = p1y; /* y 座標は変らない */ print_point ( p2x, p2y ); printf ( " となります。\n" ); return 0; }
$ ./sample-006.exe 点 ( 1.000000, 2.000000 ) と x 軸に対して線対称な点は ( 1.000000, -2.000000 ) となります。 点 ( 1.000000, 2.000000 ) と y 軸に対して線対称な点は ( -1.000000, 2.000000 ) となります。 $
Download : sample-007.c
/* * 2019/11/08 sample-007.c */ /* * 平面上の点の操作 * * 利用方法 * コンパイル * cc -c sample-007.c * リンク * cc -o sample-007.exe sample-007.c * 実行 * ./sample-007.exe */ #include <stdio.h> /* * void print_point ( double px, double py ) * 「点」を表示する * double px -- 「点」の x 座標 * double py -- 「点」の y 座標 */ void print_point ( double px, double py ) { printf ( "( %f, %f )", px, py ); } /* * void mirror_o_point_x ( double px ) * 原点に対し点対称の「点」の x 座標を求める * double px -- 「点」の x 座標 */ double mirror_o_point_x ( double px ) { return - px; } /* * void mirror_o_point_y ( double py ) * 原点に対し点対称の「点」の y 座標を求める * double py -- 「点」の y 座標 */ double mirror_o_point_y ( double py ) { return - py; } /* * main */ int main( int argc, char *argv[] ) { double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */ double p1y = 2.0; double p2x; double p2y; /* 原点に点対象 */ printf ( "点 " ); print_point ( p1x, p1y ); printf ( " と原点に対して点線対称な点は " ); /* x と y の処理を別々に行う.. */ p2x = mirror_o_point_x ( p1x ); p2y = mirror_o_point_y ( p1y ); print_point ( p2x, p2y ); printf ( " となります。\n" ); return 0; }
$ ./sample-007.exe 点 ( 1.000000, 2.000000 ) と原点に対して点線対称な点は ( -1.000000, -2.000000 ) となります。 $
Download : sample-008.c
/* * 2019/11/08 sample-008.c */ /* * 平面上の点の操作 * * 利用方法 * コンパイル * cc -c sample-008.c * リンク * cc -o sample-008.exe sample-008.c -lm * 実行 * ./sample-008.exe */ #include <stdio.h> #include <math.h> /* sqrt を利用するので必要 (-lm も忘れずに ) */ /* * void print_point ( double px, double py ) * 「点」を表示する * double px -- 「点」の x 座標 * double py -- 「点」の y 座標 */ void print_point ( double px, double py ) { printf ( "( %f, %f )", px, py ); } /* * void mirror_x_point ( double py ) * x 軸に対し線対称の「点」の y 座標を求める * double py -- 「点」の y 座標 */ double mirror_x_point ( double py ) { return - py; } /* * void mirror_y_point ( double px ) * y 軸に対し線対称の「点」の x 座標を求める * double px -- 「点」の x 座標 */ double mirror_y_point ( double px ) { return - px; } /* * main */ int main( int argc, char *argv[] ) { double p1x = 1.0; /* p1 = ( 1.0, 2.0 ) */ double p1y = 2.0; double p2x; double p2y; /* x 軸に対して線対象 */ printf ( "点 " ); print_point ( p1x, p1y ); printf ( " と x 軸に対して線対称な点は " ); p2x = p1x; /* x 座標は変らない */ p2y = mirror_x_point ( p1y ); /* y 座標のみ計算 */ print_point ( p2x, p2y ); printf ( " となります。\n" ); /* y 軸に線対象 */ printf ( "点 " ); print_point ( p1x, p1y ); printf ( " と y 軸に対して線対称な点は " ); p2x = mirror_x_point ( p1x ); /* x 座標のみ計算 */ p2y = p1y; /* y 座標は変らない */ print_point ( p2x, p2y ); printf ( " となります。\n" ); return 0; }
$ ./sample-008.exe 点 ( 1.000000, 2.000000 ) と x 軸に対して線対称な点は ( 1.000000, -2.000000 ) となります。 点 ( 1.000000, 2.000000 ) と y 軸に対して線対称な点は ( -1.000000, 2.000000 ) となります。 $
Download : sample-009.c
/* * 2019/11/08 sample-009.c */ /* * 平面上の点の操作 (構造体の利用例) * * 利用方法 * コンパイル * cc -c sample-009.c * リンク * cc -o sample-009.exe sample-009.c * 実行 * ./sample-009.exe */ #include <stdio.h> /* * 最初に、直交座標で「点」を表現する型を作ってしまう */ typedef struct { double x; /* 直交座標の x 座標を表すタグ名 */ double y; /* 直交座標の y 座標を表すタグ名 */ } Orthogonal; /* Orthogonal 型の宣言 */ /* * void print_point ( Orthogonal pt ); * 「点」を表示する * Orthogonal pt; 直交座標系で表現された「点」の座標 */ void print_point ( Orthogonal pt ) { /* * 構造体の要素は、タグ名を利用して参照できる */ printf ( "( %f, %f )", pt.x, pt.y ); } /* * Orthogonal mirror_o_point ( Orthogonal pt ) * 原点に対し点対称の「点」を求める * Orthogonal pt; 直交座標系で表現された「点」の座標 * 値 点対称の「点」を求める */ Orthogonal mirror_o_point ( Orthogonal pt ) { Orthogonal result; /* 返す値を入れる変数 */ result.x = - pt.x; /* 結果の x 座標は、元の x 座標の符号をかえた物 */ result.y = - pt.y; return result; /* 構造体の値が返せる */ } /* * main */ int main( int argc, char *argv[] ) { Orthogonal p1; Orthogonal p2; p1.x = 1.0; /* p1 = ( 1.0, 2.0 ) */ p1.y = 2.0; /* 原点に点対象 */ printf ( "点 " ); /* 構造体は引数で、そのまま渡せる */ print_point ( p1 ); printf ( " と原点に対して点線対称な点は " ); /* 構造体は、値としても取り出せるし、普通に代入もできる */ p2 = mirror_o_point ( p1 ); print_point ( p2 ); printf ( " となります。\n" ); return 0; }
$ ./sample-009.exe 点 ( 1.000000, 2.000000 ) と原点に対して点線対称な点は ( -1.000000, -2.000000 ) となります。 $
Download : sample-010.c
/* * 2019/11/08 sample-010.c */ /* * 名前を付けた点 * * 利用方法 * コンパイル * cc -c sample-010.c * リンク * cc -o sample-010.exe sample-010.c * 実行 * ./sample-010.exe */ #include <stdio.h> /* * 最初に、直交座標で「点」を表現する型を作ってしまう */ typedef struct { double x; /* 直交座標の x 座標を表すタグ名 */ double y; /* 直交座標の y 座標を表すタグ名 */ } Orthogonal; /* Orthogonal 型の宣言 */ /* * 更に、「名前付き」の「点」の型 */ typedef struct { char name; /* 点の名前 */ Orthogonal coordinate; /* 点の座標 */ } NPoint; /* * void print_point ( Orthogonal pt ); * 「点」を表示する * Orthogonal pt; 直交座標系で表現された「点」の座標 */ void print_point ( Orthogonal pt ) { /* * 構造体の要素は、タグ名を利用して参照できる */ printf ( "( %f, %f )", pt.x, pt.y ); } /* * void print_npoint ( NPoint npt ); * 名前付きの「点」を表示する * NPoint npt; 名前付きの「点」 */ void print_npoint ( NPoint npt ) { printf ( "点 %c の直交座標は ", npt.name ); print_point ( npt.coordinate ); printf ( "です。\n" ); } /* * main */ int main( int argc, char *argv[] ) { NPoint p; /* 点「P」*/ p.name = 'P'; /* 点「P」の名前は 'P' */ p.coordinate.x = 1.0; /* p.coordinate = ( 1.0, 2.0 ) */ p.coordinate.y = 2.0; print_npoint ( p ); /* 点「P」を表示 */ return 0; }
$ ./sample-010.exe 点 P の直交座標は ( 1.000000, 2.000000 )です。 $
Download : sample-011.c
/* * 2019/11/08 sample-011.c */ /* * 三次元空間内の点の操作 (構造体の利用例) * * 利用方法 * コンパイル * cc -c sample-011.c * リンク * cc -o sample-011.exe sample-011.c * 実行 * ./sample-011.exe */ #include <stdio.h> /* * 「名前付き」の空間の「点」の型 */ typedef struct { char name; /* 点の名前 */ double x; /* 直交座標の x 座標を表すタグ名 */ double y; /* 直交座標の y 座標を表すタグ名 */ double z; /* 直交座標の z 座標を表すタグ名 */ } NPoint3D; /* * void print_point3D ( NPoint3D npt ); * 「点」を表示する * NPoint3D npt; 直交座標系で表現された「点」の座標 */ void print_point ( NPoint3D pt ) { printf ( "点 %c の直交座標は ", pt.name ); printf ( "( %f, %f, %f )", pt.x, pt.y, pt.z ); printf ( "です。\n" ); } /* * NPoint3D mirror_o_point ( NPoint3D pt ) * 原点に対し点対称の「点」を求める * NPoint3D pt; 直交座標系で表現された「点」の座標 * 値 点対称の「点」を求める */ NPoint3D mirror_o_point ( char newName, NPoint3D pt ) { NPoint3D result; /* 返す値を入れる変数 */ result.name = newName; /* 名前は新しい物にする */ result.x = - pt.x; /* 結果の x 座標は、元の x 座標の符号をかえた物 */ result.y = - pt.y; /* 以下同様 */ result.z = - pt.z; return result; /* 構造体の値が返せる */ } /* * main */ int main( int argc, char *argv[] ) { NPoint3D p; NPoint3D q; p.name = 'P'; p.x = 1.0; /* P = ( 1.0, 2.0, 3.0 ) */ p.y = 2.0; p.z = 3.0; /* 原点に点対象 */ print_point ( p ); /* 構造体は、値としても取り出せるし、普通に代入もできる */ q = mirror_o_point ( 'Q', p ); printf ( "これと、原点に対して対称な、" ); print_point ( q ); return 0; }
$ ./sample-011.exe 点 P の直交座標は ( 1.000000, 2.000000, 3.000000 )です。 これと、原点に対して対称な、点 Q の直交座標は ( -1.000000, -2.000000, -3.000000 )です。 $
Download : sample-012.c
/* * 2019/11/08 sample-012.c */ /* * N 次元空間内の点の操作 (構造体/配列の利用例) * * 利用方法 * コンパイル * cc -c sample-012.c * リンク * cc -o sample-012.exe sample-012.c * 実行 * ./sample-012.exe */ #include <stdio.h> /* * 「名前付き」の空間の「点」の型 */ #define DIM 10 /* 10 次元 */ typedef struct { char name; /* 点の名前 */ double coordinate[DIM]; /* 直交座標の x 座標を表すタグ名 */ } NPointND; /* * void print_pointND ( NPointND npt ); * 「点」を表示する * NPointND npt; 直交座標系で表現された「点」の座標 */ void print_point ( NPointND pt ) { int dim; printf ( "点 %c の直交座標は ", pt.name ); printf ( "( " ); dim = 0; while ( dim < DIM ) { printf ( "%f", pt.coordinate[dim] ); if ( dim < DIM - 1 ) { printf ( ", " ); } dim++; } printf ( " )" ); printf ( "です。\n" ); } /* * NPointND mirror_o_point ( NPointND pt ) * 原点に対し点対称の「点」を求める * NPointND pt; 直交座標系で表現された「点」の座標 * 値 点対称の「点」を求める */ NPointND mirror_o_point ( char newName, NPointND pt ) { NPointND result; /* 返す値を入れる変数 */ int dim; result.name = newName; /* 名前は新しい物にする */ dim = 0; while ( dim < DIM ) { result.coordinate[dim] = - pt.coordinate[dim]; dim++; } return result; /* 構造体の値が返せる */ } /* * main */ int main( int argc, char *argv[] ) { NPointND p; NPointND q; int dim; p.name = 'P'; dim = 0; while ( dim < DIM ) { p.coordinate[dim] = dim; /* 浮動小数点型に整数値を入れると自動的に変換される */ dim++; } /* 原点に点対象 */ print_point ( p ); /* 構造体は、値としても取り出せるし、普通に代入もできる */ q = mirror_o_point ( 'Q', p ); printf ( "これと、原点に対して対称な、" ); print_point ( q ); return 0; }
$ ./sample-012.exe 点 P の直交座標は ( 0.000000, 1.000000, 2.000000, 3.000000, 4.000000, 5.000000, 6.000000, 7.000000, 8.000000, 9.000000 )です。 これと、原点に対して対称な、点 Q の直交座標は ( -0.000000, -1.000000, -2.000000, -3.000000, -4.000000, -5.000000, -6.000000, -7.000000, -8.000000, -9.000000 )です。 $
/* * 課題 20191108-01 * * 20191108 20191108-01-QQQQ.c * * 極座標で表現されている点 Q から、それと原点に対して対称な点 R を求める * 動径(原点との距離 : r) はそのまま * 角度(動径と x 軸が成す角 : a) が π だけ増える */ #include <stdio.h> #include <math.h> /* sin, cos を利用するので.. */ /* * void print_polar ( char name, double r, double a ) * 極座標の表示 * char name; 点の名前 * double r; 極座標の動径 * double a; 極座標の偏角 */ void print_polar ( char name, double r, double a ) { printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a ); } /* * main */ int main( int argc, char *argv[] ) { /* 点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 ) */ double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */ double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */ double R_polar_radius; /* 点 Q と原点対称な点 R の動径 */ double R_polar_argument; /* 点 Q と原点対称な点 R の偏角 */ /* * 点 Q の表示 */ print_polar ( 'Q', Q_polar_radius, Q_polar_argument ); /* * 点 R の計算 */ /* 対称なので原点から距離は同じ */ R_polar_radius = Q_polar_radius; /* 180(π)だけ回転 */ R_polar_argument = Q_polar_argument + M_PI; /* M_PI は円周率 */ /* * 点 R の表示 */ print_polar ( 'R', R_polar_radius, R_polar_argument ); return 0; }
/* * 課題 20191108-02 * * 20191108 20191108-02-QQQQ.c * * 構造体を利用し、平行移動を行う関数を作成する */ /* (x,y) を x 軸方向に dx, y 軸方向 dy だけ平行移動する場合、結果は (x+dx,y+dy) になる */ #include <stdio.h> /* * 最初に、直交座標で「点」を表現する型 (Orthogonal) を作ってしまう * Orthogonal 型は、二つの要素 ( x, y ) からなり、それらの型は double 型 * * Orthogonal <----> double * double * \in \in * p <----> ( p.x, p.y ) * * 残念ながら、C 言語の型定義機能で出来るのは「形(式)」の定義だけで * 「意味」の定義はできない * 「形」に「意味」をつけるのは、「それを扱うプログラム(関数)」の役目 * * コーディングルール: * 現実の世界 コンピュータの世界 * * 平面上の点 P : ( x, y ) Orthogonal 型の pt : ( pt.x, pt.y ) * P の x 座標 : 3 pt.x = 3.0 * P の y 座標 : -2 pt.y = -2.0 * * [注意] * Orthogonal 型の pt を「現実の点 P」に対応させ、 * pt.x を点数 P の直交座標系における x 座標 * pt.y を点数 P の直交座標系における y 座標 * とする対応は、「决め(る)事」であり、 * 「必然的に『決る物』」では *ない* * <反例 1> * x と y の名前は恣意的な物なので、逆にしても問題はない * つまり、 * pt.x を点数 P の直交座標系における y 座標 * pt.y を点数 P の直交座標系における x 座標 * と、対応させても、「プログラム上」はなんら問題ない * (正く動くように作る事ができる) * <反例 2> * x と y の値の対応も恣意的な物なので、変更してもよい * つまり、 * pt.x を点数 P の偏角 * pt.y を点数 P の動径 * 対応させても、「プログラム上」はなんら問題ない * (正く動くように作る事ができる) */ typedef struct { double x; /* 直交座標の x 座標を表すタグ名(x)とその型(double)の宣言 */ double y; /* 直交座標の y 座標を表すタグ名(y)とその型(double)の宣言 */ } Orthogonal; /* Orthogonal 型の宣言 */ /* * void print_point ( Orthogonal pt ); * 「点」を表示する * Orthogonal pt; 直交座標系の座標で表現された「点」 */ void print_point ( Orthogonal pt ) { /* * 構造体の要素は、タグ名を利用して参照できる */ printf ( "( %f, %f )", pt.x, pt.y ); } /* * Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y ) * 点を平行移動する * Orthogonal pt; 直交座標系の座標で表現された「点」 * double delta_x; x 軸方向の変異 (Δx) * double delta_y; y 軸方向の変異 (Δy) * 値 平行移動した結果 */ Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y ) { Orthogonal result; /* 返す値を入れる変数 */ /* x 軸方向に delta_x だけ平行移動した result.x を得るには、 pt の x 座標に delta_x を加えればよい */ result.x = pt.x + delta_x; /* y 軸方向に delta_y だけ平行移動した result.x を得るには、 pt の y 座標に delta_y を加えればよい */ /* y も同様 */ return result; /* 構造体の値が返せる */ } /* * main */ int main( int argc, char *argv[] ) { Orthogonal p1; Orthogonal p2; double dx = 10.0; double dy = -100.0; p1.x = 1.0; /* p1 = ( 1.0, 2.0 ) */ p1.y = 2.0; /* 平行移動 */ printf ( "点 " ); /* 構造体は引数で、そのまま渡せる */ print_point ( p1 ); printf ( " を x 軸方向に %f, y 軸方向に %f 移動した点は ", dx, dy ); /* 構造体は、値としても取り出せるし、普通に代入もできる */ p2 = shift_point ( p1, dx, dy ); print_point ( p2 ); printf ( " となります。\n" ); return 0; }
#include <stdio.h> /* 平面上の点は、直交座標で表す。 一つの点に対し、二つの数で対応している 関数を使って、原点対称な点を作る事を考える。 */ int trans_x ( int x ) { /* x 座標の変換 */ return -x; } int trans_y ( int y ) { /* y 座標の変換 */ return -y; } void print_orthogonal ( char name, double x, double y ) { printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y ); } int main(int argc, char *argv[]) { int px = 2; int py = 3; /* 一つの点 (P) に対して、二つの数値 (px,py) */ int rx; int ry; /* rx <- - px ry <- - py 関数を利用して、この操作をおこないたいが、 関数は、一つの値しか返せない => 二つ同時に変更する事ができない => 二つの関数で実現する。 */ print_orthogonal ( 'P', px, py ); rx = trans_x ( px ); ry = trans_y ( py ); print_orthogonal ( 'R', rx, ry ); return 0; }
#include <stdio.h> /* 平面上の点は、直交座標で表す。 一つの点に対し、構造体をつくって、それに対応させる 関数を使って、原点対称な点を作る事を考える。 */ typedef struct { int x; int y; /* x, y はタグ名となり、構成要素を参照する名前になる */ } Point; /* (int, int) -> Point p ( x, y) <-> (p.x, p.y) = p */ /* 新しいデータ型 Point がつくられているかのようにみえる ただし、こうやってつくられた型の変数に関しては、基本、 代入と参照しか操作ができない => 必要な演算は、自分で追加するする必要がある cf. trans */ Point trans ( Point p ) { /* 引数にも、返り値にも Point が使える */ /* 基本、単純型が現れて良い所には、Point が使えるようになる */ Point w; w.x = - p.x; w.y = - p.y; return w; } void print_orthogonal ( char name, Point p ) { printf ( "点 %c の直交座標は (%d,%d) です。\n", name, p.x, p.y ); } int main(int argc, char *argv[]) { Point p; /* 「点 p」を「Point 型の p」で表現可能になった */ Point r; p.x = 2; p.y = 3; print_orthogonal ( 'P', p ); /* r.x = trans_x ( p.x ); r.y = trans_x ( p.y ); */ r = trans ( p ); print_orthogonal ( 'R', r ); return 0; }
/* * 2019/11/08 sample-003.c */ /* * 平面上の「点」の二つの表現銀行口座への振込プログラム * * 利用方法 * コンパイル * cc -c sample-003.c * リンク ( M_PI,sin,cos を利用するので 「-lm」が必須 ) * cc -o sample-003.exe sample-003.c -lm * 実行 * ./sample-003.exe */ #include <stdio.h> #include <math.h> /* sin, cos を利用するので.. */ /* * void print_orthogonal ( char name, double x, double y ) * 直交座標の表示 * char name; 点の名前 * double x; 直交座標の X 座標 * double y; 直交座標の Y 座標 */ void print_orthogonal ( char name, double x, double y ) { printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y ); } /* * void print_polar ( char name, double r, double a ) * 極座標の表示 * char name; 点の名前 * double r; 極座標の動径 * double a; 極座標の偏角 */ void print_polar ( char name, double r, double a ) { printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a ); } /* * main */ int main( int argc, char *argv[] ) { /* 点 P : 座標 (2,3) */ double P_orthogonal_x = 2.0; /* 点 P の直交座標系の x 座標 */ double P_orthogonal_y = 3.0; /* 点 P の直交座標系の y 座標 */ double P_polar_radius; /* 点 P の極座標系の動径 */ double P_polar_argument; /* 点 P の極座標系の偏角 */ /* 点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 ) */ double Q_orthogonal_x; /* 点 Q の直交座標系の x 座標 */ double Q_orthogonal_y; /* 点 Q の直交座標系の y 座標 */ double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */ double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */ /* * 点 P の表示 */ print_orthogonal ( 'P', P_orthogonal_x, P_orthogonal_y ); /* * r = \sqrt{x^2+y^2} なので */ P_polar_radius = sqrt ( P_orthogonal_x * P_orthogonal_x + P_orthogonal_y * P_orthogonal_y ); /* * a = \tan^{-1}{y/x} なので * cf. http://www1.cts.ne.jp/~clab/hsample/Math/Math2.html */ P_polar_argument = atan ( P_orthogonal_y / P_orthogonal_x ); print_polar ( 'P', P_polar_radius , P_polar_argument ); /* * 点 Q の表示 */ print_polar ( 'Q', Q_polar_radius, Q_polar_argument ); /* * x = r \cos{a} なので */ Q_orthogonal_x = Q_polar_radius * cos( Q_polar_argument ); /* * y = r \sin{a} なので */ Q_orthogonal_y = Q_polar_radius * sin( Q_polar_argument ); print_orthogonal ( 'Q', Q_orthogonal_x, Q_orthogonal_y ); return 0; }
/* * 2019/11/08 sample-004.c */ /* * 直交座標で表現されている点 Q から、それと原点に対して対称な点 R を求める * * 利用方法 * コンパイル * cc -c sample-004.c * リンク * cc -o sample-004.exe sample-004.c * 実行 * ./sample-004.exe */ #include <stdio.h> /* * void print_orthogonal ( char name, double x, double y ) * 直交座標の表示 * char name; 点の名前 * double x; 直交座標の X 座標 * double y; 直交座標の Y 座標 */ void print_orthogonal ( char name, double x, double y ) { printf ( "点 %c の直交座標は (%f,%f) です。\n", name, x, y ); } /* * main */ int main( int argc, char *argv[] ) { /* 点 P : 座標 (2,3) */ double P_orthogonal_x = 2.0; /* 点 P の直交座標系の x 座標 */ double P_orthogonal_y = 3.0; /* 点 P の直交座標系の y 座標 */ double R_orthogonal_x; /* 点 P と原点対称な点 R の x 座標 */ double R_orthogonal_y; /* 点 P と原点対称な点 R の y 座標 */ /* * 点 P の表示 */ print_orthogonal ( 'P', P_orthogonal_x, P_orthogonal_y ); /* * 点 R の計算 */ /* R の x 座標は P の x 座標の符号を変えた物 */ R_orthogonal_x = - P_orthogonal_x; /* R の y 座標は P の y 座標の符号を変えた物 */ R_orthogonal_y = - P_orthogonal_y; /* * 点 R の表示 */ print_orthogonal ( 'R', R_orthogonal_x, R_orthogonal_y ); return 0; }
前回(2019/10/25)の内容 浮動小数点数 (double 型) の応用 ソフトウェア概論的 : C 言語でプログラムを書く int, char に加えて double が使える 従来(double 型導入前..) でも、「万能」である double を利用しなくても、「小数点数」を扱う事は可能 # 普通の整数に対して、小数点が、一番右の位の右にある (「123」=>「123.0」)と解釈可能 # (勝手に、「実は、小数点が、右から3番目にある『123456 => 123.456』と思う」ことも可能 => double を使うと自然に、実数(もどき)が利用できる => double という「新しい型」を導入すると(できる事は増えてないが..) 表現が簡単で、間違いもへる => 扱えるデータ型が増えると、いろいろな表現が「楽に」なる 「型」:それを操作するときに、自動的に働く機能が付随する事によって、 それの性質が「自動的」に保たれる仕組み # 「型」=> (数学) 「空間 : 集合とその集合上で利用な可能な演算の対」 数値積分 : 解析学の結果を応用 (解析的に解けない問題でも、近似解が得れる) switch 構文 整数型(文字型を含む)の式を与え、その式の値によって複数の選択肢の一つを選択 break 文によって、switch 構文の実行を終了(中断)できる リダイレクション コマンド実行時に、画面への出力を、 コマンドの後ろに "> ファイル名" とする事によって、 ファイルに切り換える(リダイレクション)する機能 => プログラムの出力を、ファイルに保存する事により、 出力の内容を再利用できる # 出力の内容が、ファイルに入っているので、エディタで変更したり、 # 次の処理の入力したりできる !! リダイレクションを使わなくても、プログラムの出力をファイルに行う方法は、講義でやる予定.. !! リダイレクションをしっていると多くの場合、上の機能は知らなくても済む !! 上の機能は、プログラムを変更しないといけないが、リダイレクションは、どのプログラムに対しても使える [まとめ] 講義の目的は、(C 言語で..) プログラムを書けるようにする プログラム : 命令の組み合わせ 命令の組み合わせ方法 : 順接と条件分岐と、繰り返しの三種類で十分 順接 命令をならべる 関数を作る ( 並べた命令を一つの名前で呼べる ) 条件分岐 if 構文 switch - case 繰り返し 再帰呼び出し while for # do ? while => 命令を組み合わせる事ができれば、プログラムが書けるので、 命令の組み合わせの仕組みがわかれば、問題 型の導入 できることは、増えないが、「表現」がしやすくなる 「文字列」, char, int, double ... [今日の話] データ構造 => データを組み合わせ作る(構造をもった..)データの「組み合わせ方?」の事 !!! 単にデータを組み合わせるだけでなく、 !!! その組み合わせたデータの操作を含めて、「データ構造」と呼ぶので、 !!! 「組み合わせ方」だけでは、説明として不十分 cf. char, int, double 型の値は、単純型(組み合わせていないデータ型) プログラムが「役立つ」のは、 プログラムが処理しているデータ(数値)と、現実の情報が対応しているから => 現実の情報を、データで表現する # 現実の情報が「整数、実数、文字」であれば、 # C 言語でも、「int, double, char」で表現できる # => より、複雑な「情報」は、どうやって、C 言語で表現するか ? 例 : 平面上の点(の位置)という情報を、数値で表現したい => 素直に考えると、「一つの数値」では表現できなさそう.. (実際はできるが...) => 二つの「数の『組』」で一つの「点」を表現する # 表現の方法は、いろいろある # 点の全体の集合と、数値(の組み合わせ)の集合との間に「全単射な関数」があれば、 # それは、「表現」になる # 平面上の点を、一つの数値で表現する事も可能 # cf. # P:(x,y) where x, y は 1 未満の正実数 # x = 0.x1x2x3... (無限小数) # y = 0.y1y2y3... (無限小数) # z = 0.x1y1x2y2.. # (x,y) <-> z : 全単射 二つの数の組で、平面上の点(の位置)を表現 直交座標系 極座標系 # いずれも、「表現」になっている # 「点」全体の集合と、二つの実数値の対の間に全単射な写像がある !!! いろいろな手段がある場合 !!! そのうちの一つを選択するならば、それは、「選択」によって、メリットがほしい もし、与えられた点に対して、 「原点対称な点を求める」という「情報処理」をする場合 直交座標系 : (x,y) => (-x,-y) 極座標系 : (r,a) => (r,a+π) 表現方法が変われば、 「同じ『機能』」を実現するのに 「異なる『計算(操作)』」 が必要になる => 「表現方法の違い」によって、「プログラミング上の違い」が生じる => (結果として..) 得失が生まれる cf. sample-004.c : 直交座標の場合の原点対称の変換になっている 20191108-01-9999.c : 極座標の場合の原点対称の変換になっている # 比較して欲いの処理の違い !! [注意したい事] !! 事実 : 表現方法が異れば処理が異る !! => !! 表現方法と、操作方法は、対にしないと意味がない !! => 数学の「空間」と関係 !! => 「表現方法」と「操作方法」の対 => データ構造 !! => !! 「じゃあどちらを選べばよいか ?」という疑問をもって欲い !! <= その時の都合が良い方を選択すると良い 例題 : 平面上の点の表現として、「直交座標系」と「極座標系」のどちらが ? もし、操作が、平行移動のような場合は、直交座標系、 もし、操作が、(原点中心の...)回転のような場合は、極座標系 になる。 現実の世界の「情報」を表現するために、コンピュータ上のデータ表現と、その操作操作が必要になる => まずは、「データ表現」の話から始める。 [構造体] 構造体 : 複数の有限固定な、要素を並べたものを表現する仕組み。 構文 構造体 : struct { 構成要素 } 構成要素 : タグ名とその型をならべたもの 例: struct { int x; int y; } typedef と組合せる事によって、既存型と同じよう利用する事ができる # typedef 構造 型名; # => 「型名」の型がつくられ、既存型と同じ振舞をする # => その型の「変数」が作れる 構造体は、複数の要素からなるので、個々の要素をタグ名で個々に独立に参照可能 !! 関数の引数や、返値にも指定できるので、 !! 関数から、複数の値を返すためにも利用可能 命令を組合せる事により、プログラムが作れる 三つの組み合せ (順接、条件分岐、繰り返し) データを組合せる事により、データ構造が作れる 三つの組み合せ (構造体、共用体、配列) # データ構造と、それを操作する演算の組 => オブジェクト # C 言語では、オブジェクトを「間接的」にしか表現できない # 最近のオブジェクト型言語 (C++, C#, Java, Go, Phyton, etc.. ) では、この「オブジェクト」が直接表現できる
課題プログラム内の「/*名前:ここ*/」の部分を書き換え「/*この部分を完成させなさい*/」の部分にプログラムを追加して、プログラムを完成させます。
Download : 20191108-01.c
/* * 課題 20191108-01 * * 20191108 20191108-01-QQQQ.c * * 極座標で表現されている点 Q から、それと原点に対して対称な点 R を求める */ #include <stdio.h> #include <math.h> /* sin, cos を利用するので.. */ /* * void print_polar ( char name, double r, double a ) * 極座標の表示 * char name; 点の名前 * double r; 極座標の動径 * double a; 極座標の偏角 */ void print_polar ( char name, double r, double a ) { printf ( "点 %c の極座標は (%f,%f) です。\n", name, r, a ); } /* * main */ int main( int argc, char *argv[] ) { /* 点 Q : 原点から 7 離れており、角度は x 軸に対して 60 度 ( Pi/3 ) */ double Q_polar_radius = 7.0; /* 点 Q の極座標系の動径 */ double Q_polar_argument = M_PI/3; /* 点 Q の極座標系の偏角 */ double R_polar_radius; /* 点 Q と原点対称な点 R の動径 */ double R_polar_argument; /* 点 Q と原点対称な点 R の偏角 */ /* * 点 Q の表示 */ print_polar ( 'Q', Q_polar_radius, Q_polar_argument ); /* * 点 R の計算 */ /* 対称なので原点から距離は同じ */ /* ** この部分を完成させなさい */ /* 180(π)だけ回転 */ /* ** この部分を完成させなさい */ /* * 点 R の表示 */ print_polar ( 'R', R_polar_radius, R_polar_argument ); return 0; }
$ ./20191108-01-QQQQ.exe 点 Q の極座標は (7.000000,1.047198) です。 点 R の極座標は (7.000000,4.188790) です。 $
Download : 20191108-02.c
/* * 課題 20191108-02 * * 20191108 20191108-02-QQQQ.c * * 構造体を利用し、平行移動を行う関数を作成する */ #include <stdio.h> /* * 最初に、直交座標で「点」を表現する型 (Orthogonal) を作ってしまう * Orthogonal 型は、二つの要素 ( x, y ) からなり、それらの型は double 型 * * Orthogonal <----> double * double * \in \in * p <----> ( p.x, p.y ) * * 残念ながら、C 言語の型定義機能で出来るのは「形(式)」の定義だけで * 「意味」の定義はできない * 「形」に「意味」をつけるのは、「それを扱うプログラム(関数)」の役目 * * コーディングルール: * 現実の世界 コンピュータの世界 * * 平面上の点 P : ( x, y ) Orthogonal 型の pt : ( pt.x, pt.y ) * P の x 座標 : 3 pt.x = 3.0 * P の y 座標 : -2 pt.y = -2.0 * * [注意] * Orthogonal 型の pt を「現実の点 P」に対応させ、 * pt.x を点数 P の直交座標系における x 座標 * pt.y を点数 P の直交座標系における y 座標 * とする対応は、「决め(る)事」であり、 * 「必然的に『決る物』」では *ない* * <反例 1> * x と y の名前は恣意的な物なので、逆にしても問題はない * つまり、 * pt.x を点数 P の直交座標系における y 座標 * pt.y を点数 P の直交座標系における x 座標 * と、対応させても、「プログラム上」はなんら問題ない * (正く動くように作る事ができる) * <反例 2> * x と y の値の対応も恣意的な物なので、変更してもよい * つまり、 * pt.x を点数 P の偏角 * pt.y を点数 P の動径 * 対応させても、「プログラム上」はなんら問題ない * (正く動くように作る事ができる) */ typedef struct { double x; /* 直交座標の x 座標を表すタグ名(x)とその型(double)の宣言 */ double y; /* 直交座標の y 座標を表すタグ名(y)とその型(double)の宣言 */ } Orthogonal; /* Orthogonal 型の宣言 */ /* * void print_point ( Orthogonal pt ); * 「点」を表示する * Orthogonal pt; 直交座標系の座標で表現された「点」 */ void print_point ( Orthogonal pt ) { /* * 構造体の要素は、タグ名を利用して参照できる */ printf ( "( %f, %f )", pt.x, pt.y ); } /* * Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y ) * 点を平行移動する * Orthogonal pt; 直交座標系の座標で表現された「点」 * double delta_x; x 軸方向の変異 (Δx) * double delta_y; y 軸方向の変異 (Δy) * 値 平行移動した結果 */ Orthogonal shift_point ( Orthogonal pt, double delta_x, double delta_y ) { Orthogonal result; /* 返す値を入れる変数 */ /* x 軸方向に delta_x だけ平行移動した result.x を得るには、 pt の x 座標に delta_x を加えればよい */ /* ** この部分を完成させなさい */ /* y 軸方向に delta_y だけ平行移動した result.x を得るには、 pt の y 座標に delta_y を加えればよい */ /* ** この部分を完成させなさい */ return result; /* 構造体の値が返せる */ } /* * main */ int main( int argc, char *argv[] ) { Orthogonal p1; Orthogonal p2; double dx = 10.0; double dy = -100.0; p1.x = 1.0; /* p1 = ( 1.0, 2.0 ) */ p1.y = 2.0; /* 平行移動 */ printf ( "点 " ); /* 構造体は引数で、そのまま渡せる */ print_point ( p1 ); printf ( " を x 軸方向に %f, y 軸方向に %f 移動した点は ", dx, dy ); /* 構造体は、値としても取り出せるし、普通に代入もできる */ /* ** この部分を完成させなさい */ print_point ( p2 ); printf ( " となります。\n" ); return 0; }
123 987 456
$ ./20191108-02-QQQQ.exe 点 ( 1.000000, 2.000000 ) を x 軸方向に 10.000000, y 軸方向に -100.000000 移動した点は ( 11.000000, -98.000000 ) となります。 $
Download : 20191108-03.c
/* * 課題 20191108-03 * * 20191108 20191108-03-QQQQ.c * * 3 次元ベクトルの差の計算 * */ #include <stdio.h> /* * 3 次元ベクトル */ typedef struct { /* 3 次元ベクトル */ double x; /* x 要素 */ double y; /* y 要素 */ double z; /* z 要素 */ } Vector3D; /* 新しい型 : Vector3D */ /* * void print_Vector3D ( Vector3D v ) * ベクトルの内容を書き出す * Vector3D v; 書き出すベクトル */ void print_Vector3D ( Vector3D v ) { printf ( " %f\n", v.x ); /* v の x 要素の出力 */ printf ( "( %f )\n", v.y ); /* v の y 要素の出力 */ printf ( " %f\n", v.z ); /* v の z 要素の出力 */ /* TeX で表現するならば、 printf ( "\\left(\\begin{array}{c} %f \\\\ %f \\\ %f \\end{array}\\right)\n", v.x, v.y, v.z ); などととすればよい。 */ } /* * Vector3D sub_Vector3D ( Vector3D dst, Vector3D src ) * 二つのベクトルの差を計算する * Vector3D dst; 引かれるベクトル * Vector3D src; 引くベクトル * 帰り値 二つのベクトルの差となるベクトル */ Vector3D sub_Vector3D ( Vector3D dst, Vector3D src ) { Vector3D result; /* 計算結果(差)を收める変数 */ /* ** この部分を完成させなさい */ /* x 成分の計算 */ result.y = dst.y - src.y; /* y 成分の計算 */ /* ** この部分を完成させなさい */ /* z 成分の計算 */ return result; /* 計算した結果を値として返す */ } /* * main */ int main( int argc, char *argv[] ) { Vector3D dst; Vector3D src; dst.x = 1.2; /* 1.2 */ dst.y = 2.3; /* dst = ( 2.3 ) */ dst.z = 3.4; /* 3.4 */ src.x = -9.8; /* -9.8 */ src.y = 8.7; /* dst = ( 8.7 ) */ src.z = 0.0; /* 0.0 */ print_Vector3D ( dst ); /* dst の出力 */ printf ( "と\n" ); print_Vector3D ( src ); /* src の出力 */ printf ( "の差は\n" ); print_Vector3D ( sub_Vector3D ( dst, src ) ); printf ( "となります。\n" ); return 0; }
$ ./20191108-03-QQQQ.exe 1.200000 ( 2.300000 ) 3.400000 と -9.800000 ( 8.700000 ) 0.000000 の差は 11.000000 ( -6.400000 ) 3.400000 となります。 $